Log in

Molecular interactions induced collapse of charge density wave quantum states in 2H tantalum disulfide nanosheets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

2H-tantalum disulfide (2H-TaS2) is a layered metallic transition metal dichalcogenide (TMD) that has recently been studied from the perspective of new physics phenomena, including simultaneous lattice distortion and charge density modulation known as the charge density wave (CDW) phase. Here we explored the collapse of CDW states in few-layer 2H-TaS2 induced by molecular interactions using Raman spectroscopy. Our results indicate that the CDW states disappear in few-layer 2H-TaS2 with rhodamine 6G (R6G) adsorbed due to the charge transfer, which is reflected by the change of behaviors of lattice vibrational modes in 2H-TaS2. We observed the 2-phonon mode that signifies the CDW formation in 2H-TaS2, and becomes a phonon-hardened mode when R6G molecules are absorbed on its surface. R6G adsorption further induces the breakdown of the Raman polarization selection rule in 2H-TaS2, which results in the alteration of the A1g phonon mode polarization state of 2H-TaS2. This study can shed light not only on the underlying mechanisms of CDW states but also on controlling the CDW states under a variety of environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

    CAS  Google Scholar 

  2. Wang, X. R.; Yasuda, K.; Zhang, Y.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Fu, L.; Jarillo-Herrero, P. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 2022, 17, 367–371.

    CAS  Google Scholar 

  3. Koley, S.; Mohanta, N.; Taraphder, A. Charge density wave and superconductivity in transition metal dichalcogenides. Eur. Phys. J. B 2020, 93, 77.

    CAS  Google Scholar 

  4. Stojchevska, L.; Vaskivskyi, I.; Mertelj, T.; Kusar, P.; Svetin, D.; Brazovskii, S.; Mihailovic, D. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 2014, 344, 177–180.

    CAS  Google Scholar 

  5. Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D. Fast electronic resistance switching involving hidden charge density wave states. Nat. Commun. 2016, 7, 11442.

    CAS  Google Scholar 

  6. Chen, X. M.; Mazzoli, C.; Cao, Y.; Thampy, V.; Barbour, A. M.; Hu, W.; Lu, M.; Assefa, T. A.; Miao, H.; Fabbris, G. et al. Charge density wave memory in a cuprate superconductor. Nat. Commun. 2019, 10, 1435.

    CAS  Google Scholar 

  7. Liu, G.; Zhang, E. X.; Liang, C. D.; Bloodgood, M. A.; Salguero, T. T.; Fleetwood, D. M.; Balandin, A. A. Total-ionizing-dose effects on threshold switching in 1T-TaS2 charge density wave devices. IEEE Electr. Device Lett. 2017, 38, 1724–1727.

    CAS  Google Scholar 

  8. Khitun, A.; Liu, G. X.; Balandin, A. A. Two-dimensional oscillatory neural network based on room-temperature charge-density-wave devices. IEEE Trans. Nanotechnol. 2017, 16, 860–867.

    CAS  Google Scholar 

  9. Khitun, A. G.; Geremew, A. K.; Balandin, A. A. Transistor-less logic circuits implemented with 2-D charge density wave devices. IEEE Electr. Device Lett. 2018, 39, 1449–1452.

    CAS  Google Scholar 

  10. Sahoo, S.; Dutta, U.; Harnagea, L.; Sood, A. K.; Karmakar, S. Pressure-induced suppression of charge density wave and emergence of superconductivity in 1T-VSe2. Phys. Rev. B 2020, 101, 014514.

    CAS  Google Scholar 

  11. Law, K. T.; Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl. Acad. Sci. USA 2017, 114, 6996–7000.

    CAS  Google Scholar 

  12. Ma, L. G.; Ye, C.; Yu, Y. J.; Lu, X. F.; Niu, X. H.; Kim, S.; Feng, D. L.; Tománek, D.; Son, Y. W.; Chen, X. H. et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2. Nat. Commun. 2016, 7, 10956.

    CAS  Google Scholar 

  13. Xu, Z. Q.; Yang, H. X.; Song, X.; Chen, Y. Y.; Yang, H.; Liu, M.; Huang, Z. P.; Zhang, Q. Z.; Sun, J. T.; Liu, L. W. Topical review: Recent progress of charge density waves in 2D transition metal dichalcogenide-based heterojunctions and their applications. Nanotechnology 2021, 32, 492001.

    CAS  Google Scholar 

  14. Lin, D. J.; Li, S. C.; Wen, J. S.; Berger, H.; Forró, L.; Zhou, H. B.; Jia, S.; Taniguchi, T.; Watanabe, K.; **, X. X. et al. Patterns and driving forces of dimensionality-dependent charge density waves in 2H-type transition metal dichalcogenides. Nat. Commun. 2020, 11, 2406.

    CAS  Google Scholar 

  15. Joshi, J.; Scharf, B.; Mazin, I.; Krylyuk, S.; Campbell, D. J.; Paglione, J.; Davydov, A.; Žutić, I.; Vora, P. M. Charge density wave activated excitons in TiSe2-MoSe2 heterostructures. APL Mater. 2022, 10, 011103.

    CAS  Google Scholar 

  16. Chen, Y.; Wu, L. S.; Xu, H.; Cong, C. X.; Li, S.; Feng, S.; Zhang, H. B.; Zou, C. J.; Shang, J. Z.; Yang, S. A. et al. Visualizing the anomalous charge density wave states in graphene/NbSe2 heterostructures. Adv. Mater. 2020, 32, 2003746.

    CAS  Google Scholar 

  17. Grasset, R.; Gallais, Y.; Sacuto, A.; Cazayous, M.; Mañas-Valero, S.; Coronado, E.; Méasson, M. A. Pressure-induced collapse of the charge density wave and Higgs mode visibility in 2H-TaS2. Phys. Rev. Lett. 2019, 122, 127001.

    CAS  Google Scholar 

  18. Adam, M. L.; Zhu, H. E.; Liu, Z. F.; Cui, S. T.; Zhang, P. J.; Liu, Y.; Zhang, G. B.; Wu, X. J.; Sun, Z.; Song, L. Charge density wave phase suppression in 1T-TiSe2 through Sn intercalation. Nano Res. 2022, 15, 2643–2649.

    CAS  Google Scholar 

  19. Hall, J.; Ehlen, N.; Berges, J.; van Loon, E.; van Efferen, C.; Murray, C.; Rösner, M.; Li, J.; Senkovskiy, B. V.; Hell, M. et al. Environmental control of charge density wave order in monolayer 2H-TaS2. ACS Nano 2019, 13, 10210–10220.

    CAS  Google Scholar 

  20. Dreher, P.; Wan, W.; Chikina, A.; Bianchi, M.; Guo, H. J.; Harsh, R.; Mañas-Valero, S.; Coronado, E.; Martínez-Galera, A. J.; Hofmann, P. et al. Proximity effects on the charge density wave order and superconductivity in single-layer NbSe2. ACS Nano 2021, 15, 19430–19438.

    CAS  Google Scholar 

  21. Sanders, C. E.; Dendzik, M.; Ngankeu, A. S.; Eich, A.; Bruix, A.; Bianchi, M.; Miwa, J. A.; Hammer, B.; Khajetoorians, A. A.; Hofmann, P. Crystalline and electronic structure of single-layer TaS2. Phys. Rev. B 2016, 94, 081404.

    Google Scholar 

  22. Yang, Y. F.; Fang, S. A.; Fatemi, V.; Ruhman, J.; Navarro-Moratalla, E.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Enhanced superconductivity upon weakening of charge density wave transport in 2H-TaS2 in the two-dimensional limit. Phys. Rev. B 2018, 98, 035203.

    CAS  Google Scholar 

  23. Lefcochilos-Fogelquist, H. M.; Albertini, O. R.; Liu, A. Y. Substrate-induced suppression of charge density wave phase in monolayer 1H-TaS2 on Au (111). Phys. Rev. B 2019, 99, 174113.

    CAS  Google Scholar 

  24. Qiao, Y. B.; Li, Y. L.; Zhong, G. H.; Zeng, Z.; Qin, X. Y. Anisotropic properties of TaS2. Chinese Phys. 2007, 16, 3809–3814.

    CAS  Google Scholar 

  25. Ekoya, B. G. M.; Shan, Y. B.; Cai, Y. C.; Okombi, N. I.; Yue, X. F.; Xu, M. S.; Cong, C. X.; Hu, L. G.; Qiu, Z. J.; Liu, R. 2H tantalum disulfide nanosheets as substrates for ultrasensitive SERS-based sensing. ACS Appl. Nano Mater. 2022, 5, 8913–8920.

    CAS  Google Scholar 

  26. Baraghani, S.; Barani, Z.; Ghafouri, Y.; Mohammadzadeh, A.; Salguero, T. T.; Kargar, F.; Balandin, A. A. Charge-density-wave thin-film devices printed with chemically exfoliated 1T-TaS2 ink. ACS Nano 2022, 16, 6325–6333.

    CAS  Google Scholar 

  27. Yu, Q. M.; Zhang, Z. Y.; Qiu, S. Y.; Luo, Y. T.; Liu, Z. B.; Yang, F. N.; Liu, H. M.; Ge, S. Y.; Zou, X. L.; Ding, B. F. et al. A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution. Nat. Commun. 2021, 12, 6051.

    CAS  Google Scholar 

  28. Zhao, J.; Wijayaratne, K.; Butler, A.; Yang, J.; Malliakas, C. D.; Chung, D. Y.; Louca, D.; Kanatzidis, M. G.; van Wezel, J.; Chatterjee, U. Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density wave gap of 2H-TaS2. Phys. Rev. B 2017, 96, 125103.

    Google Scholar 

  29. Otto, M. R.; Pöhls, J. H.; de Cotret, L. P. R.; Stern, M. J.; Sutton, M.; Siwick, B. J. Mechanisms of electron—phonon coupling unraveled in momentum and time: The case of soft phonons in TiSe2. Sci. Adv. 2021, 7, eabf2810.

    CAS  Google Scholar 

  30. Kurzhals, P.; Kremer, G.; Jaouen, T.; Nicholson, C. W.; Heid, R.; Nagel, P.; Castellan, J. P.; Ivanov, A.; Muntwiler, M.; Rumo, M. et al. Electron-momentum dependence of electron—phonon coupling underlies dramatic phonon renormalization in YNi2B2C. Nat. Commun. 2022, 13, 228.

    CAS  Google Scholar 

  31. Taube, A.; Judek, J.; Jastrzębski, C.; Duzynska, A.; Świtkowski, K.; Zdrojek, M. Temperature-dependent nonlinear phonon shifts in a supported MoS2 monolayer. ACS Appl. Mater. Interfaces 2014, 6, 8959–8963.

    CAS  Google Scholar 

  32. Cowley, R. A. Anharmonic crystals. Rep. Prog. Phys. 1968, 31, 123–166.

    CAS  Google Scholar 

  33. Klemens, P. G. Anharmonic decay of optical phonons. Phys. Rev. 1966, 148, 845–848.

    CAS  Google Scholar 

  34. Balkanski, M.; Wallis, R. F.; Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 1983, 28, 1928–1934.

    CAS  Google Scholar 

  35. Menéndez, J.; Cardona, M. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects. Phys. Rev. B 1984, 29, 2051–2059.

    Google Scholar 

  36. Um, Y. J.; Bang, Y.; Min, B. H.; Kwon, Y. S.; Le Tacon, M. Superconductivity-induced phonon renormalization on NaFe1−xCoxAs. Phys. Rev. B 2014, 89, 184510.

    Google Scholar 

  37. Klingsporn, J. M.; Jiang, N.; Pozzi, E. A.; Sonntag, M. D.; Chulhai, D.; Seideman, T.; Jensen, L.; Hersam, M. C.; Van Duyne, R. P. Intramolecular insight into adsorbate—substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2014, 136, 3881–3887.

    CAS  Google Scholar 

  38. Hildebrandt, P.; Stockburger, M. Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 1984, 88, 5935–5944.

    CAS  Google Scholar 

  39. Shim, S.; Stuart, C. M.; Mathies, R. A. Resonance Raman cross-sections and vibronic analysis of rhodamine 6G from broadband stimulated Raman spectroscopy. ChemPhysChem 2008, 9, 697–699.

    CAS  Google Scholar 

  40. Iqbal, M. W.; Shahzad, K.; Akbar, R.; Hussain, G. A review on Raman finger prints of do** and strain effect in TMDCs. Microelectron. Eng. 2020, 219, 111152.

    CAS  Google Scholar 

  41. Velický, M.; Rodriguez, A.; Bouša, M.; Krayev, A. V.; Vondráček, M.; Honolka, J.; Ahmadi, M.; Donnelly, G. E.; Huang, F. M.; Abruña, H. D. et al. Strain and charge do** fingerprints of the strong interaction between monolayer MoS2 and gold. J. Phys. Chem. Lett. 2020, 11, 6112–6118.

    Google Scholar 

  42. Li, L. F.; Zhang, X.; Luan, Z. D.; Du, Z. F.; **, S. C.; Wang, B.; Cao, L.; Lian, C.; Yan, J. Raman vibrational spectral characteristics and quantitative analysis of H2 up to 400 °C and 40 MPa. J. Raman Spectrosc. 2018, 49, 1722–1731.

    CAS  Google Scholar 

  43. Hill, H. M.; Chowdhury, S.; Simpson, J. R.; Rigosi, A. F.; Newell, D. B.; Berger, H.; Tavazza, F.; Walker, A. R. H. Phonon origin and lattice evolution in charge density wave states. Phys. Rev. B 2019, 99, 174110.

    CAS  Google Scholar 

  44. **, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769.

    CAS  Google Scholar 

  45. Sugai, S.; Murase, K.; Uchida, S.; Tanaka, S. Comparison of the soft modes in tantalum dichalcogenides. Phys. B+C 1981, 105, 405–409.

    CAS  Google Scholar 

  46. Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

    CAS  Google Scholar 

  47. Xu, B.; Mao, N. N.; Zhao, Y.; Tong, L. M.; Zhang, J. Polarized Raman spectroscopy for determining crystallographic orientation of low-dimensional materials. J. Phys. Chem. Lett. 2021, 12, 7442–7452.

    CAS  Google Scholar 

  48. Kim, J.; Lee, J. U.; Cheong, H. Polarized Raman spectroscopy for studying two-dimensional materials. J. Phys.: Condens. Matter 2020, 32, 343001.

    CAS  Google Scholar 

  49. Zhao, Y.; Zheng, L. H.; Han, S. Y.; Xu, B.; Fang, Z. Y.; Zhang, J.; Tong, L. M. Abnormal intensity and polarization of Raman scattered light at edges of layered MoS2. Nano Res. 2022, 15, 6416–6421.

    CAS  Google Scholar 

  50. Dam, S.; Thakur, A.; Hussain, S.; Shekar, N. V. C.; Amarendra, G. Observation of A1g mode at the edges of MoS2 and its applications. Eur. Phys. J. Plus 2021, 136, 589.

    CAS  Google Scholar 

  51. Guo, Y.; Zhang, W. X.; Wu, H. C.; Han, J. F.; Zhang, Y. L.; Lin, S. H.; Liu, C. R.; Xu, K.; Qiao, J. S.; Ji, W. et al. Discovering the forbidden Raman modes at the edges of layered materials. Sci. Adv. 2018, 4, eaau6252.

    CAS  Google Scholar 

  52. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961, 124, 1866–1878.

    CAS  Google Scholar 

  53. Miroshnichenko, A. E.; Flach, S.; Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010, 82, 2257–2298.

    CAS  Google Scholar 

  54. Faugeras, C.; Amado, M.; Kossacki, P.; Orlita, M.; Sprinkle, M.; Berger, C.; de Heer, W. A.; Potemski, M. Tuning the electron—phonon coupling in multilayer graphene with magnetic fields. Phys. Rev. Lett. 2009, 103, 186803.

    CAS  Google Scholar 

  55. Hasdeo, E. H.; Nugraha, A. R. T.; Dresselhaus, M. S.; Saito, R. Breitwigner-fano line shapes in Raman spectra of graphene. Phys. Rev. B 2014, 90, 245140.

    Google Scholar 

  56. Yan, J.; Zhang, Y. B.; Kim, P.; Pinczuk, A. Electric field effect tuning of electron—phonon coupling in graphene. Phys. Rev. Lett. 2007, 98, 166802.

    Google Scholar 

  57. Hettler, S.; Sreedhara, M. B.; Serra, M.; Sinha, S. S.; Popovitz-Biro, R.; Pinkas, I.; Enyashin, A. N.; Tenne, R.; Arenal, R. YS-TaS2 and YxLa1−xS-TaS2 (0 ≤ x ≤ 1) nanotubes: A family of misfit layered compounds. ACS Nano 2020, 14, 5445–5458.

    CAS  Google Scholar 

  58. Kisoda, K.; Hangyo, M.; Nakashima, S.; Suzuki, K.; Enoki, T.; Ohno, Y. Raman scattering from misfit layer compounds (RS)xTaS2 (R identical to La, Ce, Sm or Gd; S identical to sulphur; x approximately = 1.2). J. Phys.: Condens. Matter 1995, 7, 5383–5393.

    CAS  Google Scholar 

  59. Staiger, M.; Bačić, V.; Gillen, R.; Radovsky, G.; Gartsman, K.; Tenne, R.; Heine, T.; Maultzsch, J.; Thomsen, C. Raman spectroscopy of intercalated and misfit layer nanotubes. Phys. Rev. B 2016, 94, 035430.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (No. 2018YFA0703700), the National Natural Science Foundation of China (Nos. 62074045 and 61774040,), the Shanghai Municipal Natural Science Foundation (No. 20ZR1403200), and the National Young 1000 Talent Plan of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ran Liu or Chunxiao Cong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekoya, B.G.M., Han, J., Zhu, J. et al. Molecular interactions induced collapse of charge density wave quantum states in 2H tantalum disulfide nanosheets. Nano Res. 16, 6960–6966 (2023). https://doi.org/10.1007/s12274-023-5436-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5436-1

Keywords

Navigation