Log in

Biomimetic three-dimensional multilevel nanoarray electrodes with superaerophobicity as efficient bifunctional catalysts for electrochemical water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The design and preparation of cost-effective and durable catalysts for electrochemical water splitting are significant for the development and application of hydrogen production. Herein, inspired by the underwater superaerophobicity of fish scales, a three-dimensional multilevel nanoarray electrode with superaerophobicity was designed and fabricated by the hydrothermal method to solve the bubble shielding effect in electrochemical reactions. Benefiting from the high specific surface area, superaerophobic properties, and Al do**, the Al−CoS2 nanosheets (NSs)/nickel foam (NF)-30 exhibits outstanding electrocatalytic activity and superior durability for electrochemical water splitting in 1 M KOH. Significantly, the Al−CoS2 NSs/NF-30 only required extremely low overpotential of 176 mV for oxygen evolution reaction (OER) to reach a current density of 10 mA·cm−2. Al−CoS2 NSs/NF-30 was employed as bifunctional electrode for electrochemical water splitting with a cell voltage of 1.58 V at 10 mA·cm−2. Meanwhile, Al-−CoS2 NSs/NF-30 exhibited excellent durability (250 h@10 mA·cm−2 and 50 h@100 mA·cm−2). The cobalt-based catalyst (Al−CoS2 NSs/NF-30) with superaerophobicity exhibits excellent performance in activity and durability, and therefore is a promising electrochemical water splitting catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, X.; Tao, K.; Wang, D.; Han, L. Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors. Nanoscale 2018, 10, 2735–2741.

    CAS  Google Scholar 

  2. Nowotny, J.; Dodson, J.; Fiechter, S.; Gür, T. M.; Kennedy, B.; Macyk, W.; Bak, T.; Sigmund, W.; Yamawaki, M.; Rahman, K. A. Towards global sustainability: Education on environmentally clean energy technologies. Renew. Sust. Energ. Rev. 2018, 81, 2541–2551.

    Google Scholar 

  3. Su, J. W.; Ge, R. X.; Jiang, K. M.; Dong, Y.; Hao, F.; Tian, Z. Q.; Chen, G. X.; Chen, L. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2018, 30, 1801351.

    Google Scholar 

  4. Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919.

    CAS  Google Scholar 

  5. Capurso, T.; Stefanizzi, M.; Torresi, M.; Camporeale, S. M. Perspective of the role of hydrogen in the 21st century energy transition. Energy Convers Manag. 2022, 251, 114898.

    CAS  Google Scholar 

  6. Shit, S.; Chhetri, S.; Jang, W.; Murmu, N. C.; Koo, H.; Samanta, P.; Kuila, T. Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: An efficient and durable electrocatalyst for overall water splitting application. ACS Appl. Mater. Interfaces 2018, 10, 27712–27722.

    CAS  Google Scholar 

  7. Zubair, M.; UL Hassan, M. M.; Mehran, M. T.; Baig, M. M.; Hussain, S.; Shahzad, F. 2D MXenes and their heterostructures for HER, OER, and overall water splitting: A review. Int. J. Hydrogen Energy 2022, 47, 2794–2818.

    CAS  Google Scholar 

  8. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Google Scholar 

  9. Ullah, N.; Zhao, W. T.; Lu, X. Q.; Oluigbo, C. J.; Shah, S. A.; Zhang, M. M.; **e, J. M.; Xu, Y. G. In situ growth of M-MO (M = Ni, Co) in 3D graphene as a competent bifunctional electrocatalyst for OER and HER. Electrochim. Acta 2019, 298, 163–171.

    CAS  Google Scholar 

  10. Wang, Y.; Kong, B.; Zhao, D. Y.; Wang, H. T.; Selomulya, C. Strategies for develo** transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26–55.

    CAS  Google Scholar 

  11. Zheng, S. S.; Guo, X. T.; Xue, H. G.; Pan, K. M.; Liu, C. S.; Pang, H. Facile one-pot generation of metal oxide/hydroxide@metal-organic framework composites: Highly efficient bifunctional electrocatalysts for overall water splitting. Chem. Commun. 2019, 55, 10904–10907.

    CAS  Google Scholar 

  12. Talib, S. H.; Lu, Z. S.; Yu, X. H.; Ahmad, K.; Bashir, B.; Yang, Z. X.; Li, J. Theoretical inspection of M1/PMA single-atom electrocatalyst: Ultra-high performance for water splitting (HER/OER) and oxygen reduction reactions (OER). ACS Catal. 2021, 11, 8929–8941.

    CAS  Google Scholar 

  13. Singh, T. I.; Rajeshkhanna, G.; Pan, U. N.; Kshetri, T.; Lin, H.; Kim, N. H.; Lee, J. H. Alkaline water splitting enhancement by MOF-derived Fe-Co-oxide/Co@NC-mNS heterostructure: Boosting OER and HER through defect engineering and in situ oxidation. Small 2021, 17, 2101312.

    CAS  Google Scholar 

  14. Su, J. W.; **a, G. L.; Li, R.; Yang, Y.; Chen, J. T.; Shi, R. H.; Jiang, P.; Chen, Q. W. Co3ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts. J. Mater. Chem. A 2016, 4, 9204–9212.

    CAS  Google Scholar 

  15. Li, L.; Wang, B.; Zhang, G. W.; Yang, G.; Yang, T.; Yang, S.; Yang, S. C. Electrochemically modifying the electronic structure of IrO2 nanoparticles for overall electrochemical water splitting with extensive adaptability. Adv. Energy Mater. 2020, 10, 2001600.

    CAS  Google Scholar 

  16. Chen, D.; Lu, R. H.; Pu, Z. H.; Zhu, J. W.; Li, H. W.; Liu, F.; Hu, S.; Luo, X.; Wu, J. S.; Zhao, Y. et al. Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Appl. Catal. B: Environ. 2020, 279, 119396.

    CAS  Google Scholar 

  17. Fan, Y. X.; Zhang, X. D.; Zhang, Y. J.; **e, X.; Ding, J.; Cai, J. L.; Li, B. J.; Lv, H. L.; Liu, L. Y.; Zhu, M. M. et al. Decoration of Ru/RuO2 hybrid nanoparticles on MoO2 plane as bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2021, 604, 508–516.

    CAS  Google Scholar 

  18. Chen, G. B.; Wang, T.; Zhang, J.; Liu, P.; Sun, H. J.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279.

    Google Scholar 

  19. Cai, P. W.; Li, Y.; Wang, G. X.; Wen, Z. H. Alkaline-acid Zn-H2O fuel cell for the simultaneous generation of hydrogen and electricity. Angew. Chem., Int. Ed. 2018, 57, 3910–3915.

    CAS  Google Scholar 

  20. Zhang, Q.; Han, W. J.; Xu, Z. X.; Li, Y. L.; Chen, L.; Bai, Z. Y.; Yang, L.; Wang, X. L. Hollow waxberry-like cobalt-nickel oxide/S, N-codoped carbon nanospheres as a trifunctional electrocatalyst for OER, ORR, and HER. RSC Adv. 2020, 10, 27788–27793.

    CAS  Google Scholar 

  21. Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; **a, H. C.; Cheng, F. Y.; Zhou, M. F.; Li, J.; Qiao, Y. Y.; Mu, S. C.; Xu, Q. Co2−CoN double active centers confined in N-doped carbon nanotube: Heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting. Adv. Funct. Mater. 2018, 28, 1805641.

    Google Scholar 

  22. Zhang, J. C.; Zhang, D. J.; Zhang, R. C.; Zhang, N. N.; Cui, C. C.; Zhang, J. R.; Jiang, B.; Yuan, B. Q.; Wang, T. Y.; **e, H. et al. Facile synthesis of mesoporous and thin-walled Ni−Co sulfide nanotubes as efficient electrocatalysts for oxygen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 495–502.

    CAS  Google Scholar 

  23. Guo, Y. N.; Tang, J.; Wang, Z. L.; Kang, Y. M.; Bando, Y.; Yamauchi, Y. Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 2018, 47, 494–502.

    CAS  Google Scholar 

  24. Hua, Y. P.; Jiang, H.; Jiang, H. B.; Zhang, H. X.; Li, C. Z. Hierarchical porous CoS2 microboxes for efficient oxygen evolution reaction. Electrochim. Acta 2018, 278, 219–225.

    CAS  Google Scholar 

  25. Zhu, J. Q.; Ren, Z. Y.; Du, S. C.; **e, Y.; Wu, J.; Meng, H. Y.; Xue, Y. Z.; Fu, H. G. Co-vacancy-rich Co1−xS nanosheets anchored on rGO for high-efficiency oxygen evolution. Nano Res. 2017, 10, 1819–1831.

    CAS  Google Scholar 

  26. Guan, C.; Liu, X. M.; Elshahawy, A. M.; Zhang, H.; Wu, H. J.; Pennycook, S. J.; Wang, J. Metal-organic framework derived hollow CoS2 nanotube arrays: An efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horiz. 2017, 2, 342–348.

    CAS  Google Scholar 

  27. Li, Y. G.; Fu, X.; Zhu, W. X.; Gong, J. D.; Sun, J.; Zhang, D. H.; Wang, J. L. Self-ZIF template-directed synthesis of a CoS nanoflake array as a Janus electrocatalyst for overall water splitting. Inorg. Chem. Front. 2019, 6, 2090–2095.

    CAS  Google Scholar 

  28. Wang, K. X.; Wang, X. Y.; Li, Z. J.; Yang, B.; Ling, M.; Gao, X.; Lu, J. G.; Shi, Q. R.; Lei, L. C.; Wu, G. et al. Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides. Nano Energy 2020, 77, 105162.

    CAS  Google Scholar 

  29. Men, Y.; Li, P.; Zhou, J. H.; Cheng, G. Z.; Chen, S. L.; Luo, W. Tailoring the electronic structure of Co2P by N do** for boosting hydrogen evolution reaction at all pH values. ACS Catal. 2019, 9, 3744–3752.

    CAS  Google Scholar 

  30. Lu, Z. Y.; Zhu, W.; Yu, X. Y.; Zhang, H. C.; Li, Y. J.; Sun, X. M.; Wang, X. W.; Wang, H.; Wang, J. M.; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683–2687.

    CAS  Google Scholar 

  31. Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598.

    CAS  Google Scholar 

  32. Yong, J. L.; Chen, F.; Li, M. J.; Yang, Q.; Fang, Y.; Huo, J. L.; Hou, X. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces. J. Mater. Chem. A 2017, 5, 25249–25257.

    CAS  Google Scholar 

  33. Tian, Y. M.; Lin, Z. W.; Yu, J.; Zhao, S. J.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Qi, Y. F.; Zhang, H. S.; Li, R. M. et al. Superaerophobic quaternary Ni−Co−S−P nanoparticles for efficient overall water-splitting. ACS Sustainable Chem. Eng. 2019, 7, 14639–14646.

    CAS  Google Scholar 

  34. Chen, X. B.; Sheng, L.; Li, S. X.; Cui, Y.; Lin, T. R.; Que, X. Y.; Du, Z. H.; Zhang, Z. Y.; Peng, J.; Ma, H. L. et al. Facile syntheses and in-situ study on electrocatalytic properties of superaerophobic CoxP-nanoarray in hydrogen evolution reaction. Chem. Eng. J. 2021, 426, 131029.

    CAS  Google Scholar 

  35. Yao, Y. L.; He, J. M.; Yang, X.; Peng, L.; Zhu, X. D.; Li, K. S.; Qu, M. N. Superhydrophilic/underwater superaerophobic self-supporting CuS/Cu foam electrode for efficient oxygen evolution reaction. Colloid. Surf. A Physicochem. Eng. Aspects 2022, 634, 127934.

    CAS  Google Scholar 

  36. Shen, J. J.; Li, B.; Zheng, Y.; Dai, Z. Y.; Li, J. L.; Bao, X. Z.; Guo, J. P.; Yu, X. Q.; Guo, Y. Z. et al. Engineering the composition and structure of superaerophobic nanosheet array for efficient hydrogen evolution. Chem. Eng. J. 2022, 433, 133517.

    CAS  Google Scholar 

  37. Yong, J. L.; Chen, F.; Fang, Y.; Huo, J. L.; Yang, Q. Z.; Zhang, J.; Bian, H.; Hou, X. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for antior capturing bubbles. ACS Appl. Mater. Interfaces 2017, 9, 39863–39871.

    CAS  Google Scholar 

  38. Quan, H. C.; Yang, W.; Lapeyriere, M.; Schaible, E.; Ritchie, R. O.; Meyers, M. A. Structure and mechanical adaptability of a modern elasmoid fish scale from the common carp. Matter 2020, 3, 842–863.

    Google Scholar 

  39. Liu, H. X.; Liu, X. J.; Mao, Z. Y.; Zhao, Z.; Peng, X. Y.; Luo, J.; Sun, X. M. Plasma-activated Co3(PO4)2 nanosheet arrays with Co3+-rich surfaces for overall water splitting. J. Power Sources 2018, 400, 190–197.

    CAS  Google Scholar 

  40. Wang, M.; Zhang, W. J.; Zhang, F. F.; Zhang, Z. H.; Tang, B.; Li, J. P.; Wang, X. G. Theoretical expectation and experimental implementation of in situ Al-doped CoS2 nanowires on dealloying-derived nanoporous intermetallic substrate as an efficient electrocatalyst for boosting hydrogen production. ACS Catal. 2019, 9, 1489–1502.

    CAS  Google Scholar 

  41. Waghmode, R. B.; Jadhav, H. S.; Kanade, K. G.; Torane, A. P. Morphology-controlled synthesis of NiCo2O4 nanoflowers on stainless steel substrates as high-performance supercapacitors. Mater. Sci. Energy Technol. 2019, 2, 556–564.

    Google Scholar 

  42. Lin, E. Z.; Huang, R.; Wu, J.; Kang, Z. H.; Ke, K. H.; Qin, N.; Bao, D. H. Recyclable CoFe2O4 modified BiOCl hierarchical microspheres utilizing photo, photothermal, and mechanical energy for organic pollutant degradation. Nano Energy 2021, 89, 106403.

    CAS  Google Scholar 

  43. Guo, R. N.; Qi, X. Y.; Zhang, X. Y.; Zhang, H. X.; Cheng, X. W. Synthesis of Ag2CO3/α-Fe2O3 heterojunction and it high visible light driven photocatalytic activity for elimination of organic pollutants. Sep. Purif. Technol. 2019, 211, 504–513.

    CAS  Google Scholar 

  44. Si, H. N.; Liao, Q. L.; Zhang, Z.; Li, Y.; Yang, X. H.; Zhang, G. J.; Kang, Z.; Zhang, Y. An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy 2016, 22, 223–231.

    CAS  Google Scholar 

  45. Liu, Y.; Zhang, M. F.; Nie, Y.; Zhang, J.; Wang, J. Z. Growth of YAG: Ce3+−Al2O3 eutectic ceramic by HDS method and its application for white LEDs. J. Eur. Ceram. Soc. 2017, 37, 4931–4937.

    CAS  Google Scholar 

  46. Takahashi, K.; Imamura, M.; Hirama, K.; Kasu, M. Electronic states of NO2−exposed H-terminated diamond/Al2O3 heterointerface studied by synchrotron radiation photoemission and X-ray absorption spectroscopy. Appl. Phys. Lett. 2014, 104, 072101.

    Google Scholar 

  47. Nakamura, S.; Yamamoto, A. Electrodeposition of pyrite (FeS2) thin films for photovoltaic cells. Sol. Energy Mater. Sol. Cells 2001, 65, 79–85.

    CAS  Google Scholar 

  48. Cheng, N. Y.; Liu, Q.; Asiri, A. M.; **ng, W.; Sun, X. P. A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density. J. Mater. Chem. A. 2015, 3, 23207–23212.

    CAS  Google Scholar 

  49. Guo, M. R.; Qayum, A.; Dong, S.; Jiao, X. L.; Chen, D. R.; Wang, T. In situ conversion of metal (Ni, Co, or Fe) foams into metal sulfide (Ni3S2, Co9S8, or FeS) foams with surface grown N-doped carbon nanotube arrays as efficient superaerophobic electrocatalysts for overall water splitting. J. Mater. Chem. A. 2020, 8, 9239–9247.

    CAS  Google Scholar 

  50. Gao, Y.; Mi, L. W.; Wei, W. T.; Cui, S. Z.; Zheng, Z.; Hou, H. W.; Chen, W. H. Double metal ions synergistic effect in hierarchical multiple sulfide microflowers for enhanced supercapacitor performance. ACS Appl. Mater. Interfaces 2015, 7, 4311–4319.

    CAS  Google Scholar 

  51. Cui, X. D.; **e, Z. Q.; Wang, Y. Novel CoS2 embedded carbon nanocages by direct sulfurizing metal-organic frameworks for dye-sensitized solar cells. Nanoscale 2016, 8, 11984–11992.

    CAS  Google Scholar 

  52. Shaat, S. K. K.; Swart, H. C.; Ntwaeaborwa, O. M. Tunable and white photoluminescence from Tb3+−Eu3+ activated Ca0.3Sr0.7Al2O4 phosphors and analysis of chemical states by X-ray photoelectron spectroscopy. J. Alloys Compd. 2014, 587, 600–605.

    CAS  Google Scholar 

  53. Andreu, N.; Flahaut, D.; Dedryvère, R.; Minvielle, M.; Martinez, H.; Gonbeau, D. XPS investigation of surface reactivity of electrode materials: Effect of the transition metal. ACS Appl. Mater. Interfaces 2015, 7, 6629–6636.

    CAS  Google Scholar 

  54. Mansour, A. N. Nickel monochromated Al Kα XPS spectra from the physical electronics model 5400 spectrometer. Surf. Sci. Spectra 1994, 3, 221–230.

    CAS  Google Scholar 

  55. Strydom, C. A.; Strydom, H. J. X-ray photoelectron spectroscopy studies of some cobalt(II) nitrate complexes. Inorg. Chim. Acta 1989, 159, 191–195.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51774028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng Zhang or **ndong Wang.

Electronic Supplementary Material

12274_2022_5373_MOESM1_ESM.pdf

Biomimetic three-dimensional multilevel nanoarray electrodes with superaerophobicity as efficient bifunctional catalysts for electrochemical water splitting

Supplementary material, approximately 2.19 MB.

Supplementary material, approximately 11.9 MB.

Supplementary material, approximately 15.9 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liu, Y., Liu, L. et al. Biomimetic three-dimensional multilevel nanoarray electrodes with superaerophobicity as efficient bifunctional catalysts for electrochemical water splitting. Nano Res. 16, 6584–6592 (2023). https://doi.org/10.1007/s12274-022-5373-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5373-4

Keywords

Navigation