Log in

A multistimuli-responsive fluorescent hydrogel based on a fluorescence response to macromolecular segmental motion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fluorescent hydrogels with fast and reversible responses have attracted extensive attention, and it remains a challenge to design multistimuli-responsive fluorescent hydrogel through a facile and versatile method. Meanwhile, the segmental motion in hydrogels is of significance for the various functions of hydrogels such as chemical reactivity, self-healing, and mechanical strength, etc., however, it is difficult and complicated to in situ investigate the segmental motion under different conditions. In this work, a multistimuli-responsive fluorescent hydrogel was designed and fabricated by introducing a tetraphenylethylene (TPE) derivative as a nonaggregated crosslinker in the gel network. Since the intermolecular rotation of TPE at the crosslinking point was directly integrated with the dynamic conformational transition of the macromolecular network, the mobility of macromolecular segments can be monitored by the fluorescence intensity of the hydrogel. The prepared hydrogel has promising fluorescence responses to temperature, pH, metal ions, and hydrogen bonding agents, and characterization of the fluorescence and the chain segmental motion showed that the weaker the mobility of the network macromolecular chain is, the stronger the fluorescence intensity is. Furthermore, due to the multistimuli-responsive fluorescence of the hydrogel, such fluorescent hydrogels can be designed as reversible patterning displays and biomimetic color/shape adjustable actuators, with various potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, S. X.; Li, Z.; Lu, W.; Liu, H.; Zhang, J. W.; Chen, T.; Tang, B. Z. Multicolor fluorescent polymeric hydrogels. Angew. Chem., Int. Ed. 2021, 60, 8608–8624.

    CAS  Google Scholar 

  2. Li, Z.; Ji, X. F.; **e, H. L.; Tang, B. Z. Aggregation-induced emission-active gels: Fabrications, functions, and applications. Adv. Mater. 2021, 33, 2100021.

    CAS  Google Scholar 

  3. Yang, C. H.; Suo, Z. G. Hydrogel ionotronics. Nat. Rev. Mater. 2018, 3, 125–142.

    CAS  Google Scholar 

  4. Zhao, X. H.; Chen, X. Y.; Yuk, H.; Lin, S. T.; Liu, X. Y.; Parada, G. Soft materials by design: Unconventional polymer networks give extreme properties. Chem. Rev. 2021, 121, 4309–4372.

    CAS  Google Scholar 

  5. Yang, J.; Li, K.; Tang, C.; Liu, Z. Z.; Fan, J. H.; Qin, G.; Cui, W.; Zhu, L.; Chen, Q. Recent progress in double network elastomers: One plus one is greater than two. Adv. Funct. Mater. 2022, 32, 2110244.

    CAS  Google Scholar 

  6. Weng, G. S.; Thanneeru, S.; He, J. Dynamic coordination of Euiminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv. Mater. 2018, 30, 1706526.

    Google Scholar 

  7. Deng, J. W.; Wu, H. R.; **e, W. D.; Jia, H. Y.; **a, Z. G.; Wang, H. L. Metal cation-responsive and excitation-dependent nontraditional multicolor fluorescent hydrogels for multidimensional information encryption. ACS Appl. Mater. Interfaces 2021, 13, 39967–39975.

    CAS  Google Scholar 

  8. Hai, J.; Li, T. R.; Su, J. X.; Liu, W. S.; Ju, Y. M.; Wang, B. D.; Hou, Y. L. Reversible response of luminescent terbium(III)-nanocellulose hydrogels to anions for latent fingerprint detection and encryption. Angew. Chem., Int. Ed. 2018, 57, 6786–6790.

    CAS  Google Scholar 

  9. Li, M.; Li, W. J.; Cai, W.; Zhang, X. J.; Wang, Z. H.; Street, J.; Ong, W. J.; **a, Z. H.; Xu, Q. A self-healing hydrogel with pressure sensitive photoluminescence for remote force measurement and healing assessment. Mater. Horiz. 2019, 6, 703–710.

    CAS  Google Scholar 

  10. Zhu, Q. D.; van Vliet, K.; Holten-Andersen, N.; Miserez, A. A double-layer mechanochromic hydrogel with multidirectional force sensing and encryption capability. Adv. Funct. Mater. 2019, 29, 1808191.

    Google Scholar 

  11. Ji, X. F.; Wu, R. T.; Long, L. L.; Ke, X. S.; Guo, C. X.; Ghang, Y. J.; Lynch, V. M.; Huang, F. H.; Sessler, J. L. Encoding, reading, and transforming information using multifluorescent supramolecular polymeric hydrogels. Adv. Mater. 2018, 30, 1705480.

    Google Scholar 

  12. Le, X. X.; Shang, H.; Yan, H. Z.; Zhang, J. W.; Lu, W.; Liu, M. J.; Wang, L. P.; Lu, G. M.; Xue, Q. J.; Chen, T. A urease-containing fluorescent hydrogel for transient information storage. Angew. Chem., Int. Ed. 2021, 60, 3640–3646.

    CAS  Google Scholar 

  13. Li, Z. Q.; Chen, H. Z.; Li, B.; **e, Y. M.; Gong, X. L.; Liu, X.; Li, H. R.; Zhao, Y. L. Photoresponsive luminescent polymeric hydrogels for reversible information encryption and decryption. Adv. Sci. 2019, 6, 1901529.

    CAS  Google Scholar 

  14. Zhu, C. N.; Bai, T. W.; Wang, H.; Ling, J.; Huang, F. H.; Hong, W.; Zheng, Q.; Wu, Z. L. Dual-encryption in a shape-memory hydrogel with tunable fluorescence and reconfigurable architecture. Adv. Mater. 2021, 33, 2102023.

    CAS  Google Scholar 

  15. Liu, J. Z.; Guo, Q. Q.; Zhang, X. X.; Gai, J. G.; Zhang, C. H. Multistage responsive materials for real-time, reversible, and sustainable light-writing. Adv. Funct. Mater. 2021, 31, 2106673.

    CAS  Google Scholar 

  16. Yao, Y.; Yin, C. Z.; Hong, S. K.; Chen, H. H.; Shi, Q. K.; Wang, J.; Lu, X. Y.; Zhou, N. J. Lanthanide-ion-coordinated supramolecular hydrogel inks for 3D printed full-color luminescence and opacitytuning soft actuators. Chem. Mater. 2020, 32, 8868–8876.

    CAS  Google Scholar 

  17. Lan, R. C.; Gao, Y. Z.; Shen, C.; Huang, R.; Bao, J. Y.; Zhang, Z. P.; Wang, Q.; Zhang, L. Y.; Yang, H. Humidity-responsive liquid crystalline network actuator showing synergistic fluorescence color change enabled by aggregation induced emission luminogen. Adv. Funct. Mater. 2021, 31, 2010578.

    CAS  Google Scholar 

  18. Zhu, C. N.; Bai, T. W.; Wang, H.; Bai, W.; Ling, J.; Sun, J. Z.; Huang, F. H.; Wu, Z. L.; Zheng, Q. Single chromophore-based white-light-emitting hydrogel with tunable fluorescence and patternability. ACS Appl. Mater. Interfaces 2018, 10, 39343–39352.

    CAS  Google Scholar 

  19. Li, Z. Q.; Wang, G. N.; Wang, Y. G.; Li, H. R. Reversible phase transition of robust luminescent hybrid hydrogels. Angew. Chem. 2018, 130, 2216–2220.

    Google Scholar 

  20. Wei, S. X.; Lu, W.; Le, X. X.; Ma, C. X.; Lin, H.; Wu, B. Y.; Zhang, J. W.; Theato, P.; Chen, T. Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators. Angew. Chem. 2019, 131, 16389–16397.

    Google Scholar 

  21. Zhang, Y. C.; Le, X. X.; Jian, Y. K.; Lu, W.; Zhang, J. W.; Chen, T. 3D fluorescent hydrogel origami for multistage data security protection. Adv. Funct. Mater. 2019, 29, 1905514.

    CAS  Google Scholar 

  22. Wei, S. X.; Qiu, H. Y.; Shi, H. H.; Lu, W.; Liu, H.; Yan, H. Z.; Zhang, D. C.; Zhang, J. W.; Theato, P.; Wei, Y. et al. Promotion of color-changing luminescent hydrogels from thermo to electrical responsiveness toward biomimetic skin applications. ACS Nano 2021, 15, 10415–10427.

    CAS  Google Scholar 

  23. Le, X. X.; Shang, H.; Wu, S. S.; Zhang, J. W.; Liu, M. J.; Zheng, Y. F.; Chen, T. Heterogeneous fluorescent organohydrogel enables dynamic anti-counterfeiting. Adv. Funct. Mater. 2021, 31, 2108365.

    CAS  Google Scholar 

  24. Ma, C. X.; Lu, W.; Yang, X. X.; He, J.; Le, X. X.; Wang, L.; Zhang, J. W.; Serpe, M. J.; Huang, Y. J.; Chen, T. Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors. Adv. Funct. Mater. 2018, 28, 1704568.

    Google Scholar 

  25. Wang, Z. J.; Jiang, J. L.; Mu, Q. F.; Maeda, S.; Nakajima, T.; Gong, J. P. Azo-crosslinked double-network hydrogels enabling highly efficient mechanoradical generation. J. Am. Chem. Soc. 2022, 144, 3154–3161.

    CAS  Google Scholar 

  26. He, G. X.; Lei, H.; Sun, W. X.; Gu, J.; Yu, W. T.; Zhang, D.; Chen, H. Y.; Li, Y.; Qin, M.; Xue, B. et al. Strong and reversible covalent double network hydrogel based on force-coupled enzymatic reactions. Angew. Chem., Int. Ed. 2022, 61, e202201765.

    CAS  Google Scholar 

  27. Cui, W.; Zhu, R. J.; Zheng, Y.; Mu, Q. F.; Pi, M. H.; Chen, Q.; Ran, R. Transforming non-adhesive hydrogels to reversible tough adhesives via mixed-solvent-induced phase separation. J. Mater. Chem. A 2021, 9, 9706–9718.

    CAS  Google Scholar 

  28. Dai, X. Y.; Zhang, Y. Y.; Gao, L. N.; Bai, T.; Wang, W.; Cui, Y. L.; Liu, W. G. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 2015, 27, 3566–3571.

    CAS  Google Scholar 

  29. Xu, J. J.; Wang, G. Y.; Wu, Y. F.; Ren, X. Y.; Gao, G. H. Ultrastretchable wearable strain and pressure sensors based on adhesive, tough, and self-healing hydrogels for human motion monitoring. ACS Appl. Mater. Interfaces 2019, 11, 25613–25623.

    CAS  Google Scholar 

  30. Takahashi, R.; Ikai, T.; Kurokawa, T.; King, D. R.; Gong, J. P. Double network hydrogels based on semi-rigid polyelectrolyte physical networks. J. Mater. Chem. B 2019, 7, 6347–6354.

    CAS  Google Scholar 

  31. Liu, C.; Morimoto, N.; Jiang, L.; Kawahara, S.; Noritomi, T.; Yokoyama, H.; Mayumi, K.; Ito, K. Tough hydrogels with rapid self-reinforcement. Science 2021, 372, 1078–1081.

    CAS  Google Scholar 

  32. Desando, M. A.; Lahajnar, G.; Sepe, A. Proton magnetic relaxation and the aggregation of n-octylammonium n-octadecanoate surfactant in deuterochloroform solution. J. Colloid Interface Sci. 2010, 345, 338–345.

    CAS  Google Scholar 

  33. Zhang, Q.; Liu, X.; Duan, L. J.; Gao, G. H. Nucleotide-driven skin-attachable hydrogels toward visual human-machine interfaces. J. Mater. Chem. A 2020, 8, 4515–4523.

    CAS  Google Scholar 

  34. Shi, L. Y.; Carstensen, H.; Hölzl, K.; Lunzer, M.; Li, H.; Hilborn, J.; Ovsianikov, A.; Ossipov, D. A. Dynamic coordination chemistry enables free directional printing of biopolymer hydrogel. Chem. Mater. 2017, 29, 5816–5823.

    CAS  Google Scholar 

  35. Zhao, Z.; Zhang, H. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: New vistas at the aggregate level. Angew. Chem., Int. Ed. 2020, 59, 9888–9907.

    CAS  Google Scholar 

  36. Li, J.; Wang, J. X.; Li, H. X.; Song, N.; Wang, D.; Tang, B. Z. Supramolecular materials based on AIE luminogens (AIEgens): Construction and applications. Chem. Soc. Rev. 2020, 49, 1144–1172.

    CAS  Google Scholar 

  37. Li, B. T.; Zhang, Y. C.; Wang, J.; Yan, B.; Liang, J. D.; Dong, Y. P.; Zhou, Q. Fast and reversibly humidity-responsive fluorescence based on AIEgen proton transfer. ACS Appl. Mater. Interfaces 2022, 14, 49119–49127.

    CAS  Google Scholar 

  38. Liu, H.; Wei, S. X.; Qiu, H. Y.; Zhan, B. B.; Liu, Q. Q.; Lu, W.; Zhang, J. W.; Ngai, T.; Chen, T. Naphthalimide-based aggregation-induced emissive polymeric hydrogels for fluorescent pattern switch and biomimetic actuators. Macromol. Rapid Commun. 2020, 41, 2000123.

    CAS  Google Scholar 

  39. Hu, Y. B.; Barbier, L.; Li, Z.; Ji, X. F.; Le Blay, H.; Hourdet, D.; Sanson, N.; Lam, J. W. Y.; Marcellan, A.; Tang, B. Z. Hydrophilicity-hydrophobicity transformation, thermoresponsive morphomechanics, and crack multifurcation revealed by AIEgens in mechanically strong hydrogels. Adv. Mater. 2021, 33, 2101500.

    CAS  Google Scholar 

  40. Wang, X. M.; Xu, K. Y.; Yao, H. C.; Chang, L. M.; Wang, Y.; Li, W. J.; Zhao, Y. L.; Qin, J. L. Temperature-regulated aggregation-induced emissive self-healable hydrogels for controlled drug delivery. Polym. Chem. 2018, 9, 5002–5013.

    CAS  Google Scholar 

  41. Xue, J. Q.; Bai, W.; Duan, H. Y.; Nie, J. J.; Du, B. Y.; Sun, J. Z.; Tang, B. Z. Tetraphenylethene cross-linked thermosensitive microgels via acylhydrazone bonds: Aggregation-induced emission in nanoconfined environments and the cononsolvency effect. Macromolecules 2018, 51, 5762–5772.

    CAS  Google Scholar 

  42. Mei, J.; Hong, Y. N.; Lam, J. W. Y.; Qin, A. J.; Tang, Y. H.; Tang, B. Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429–5479.

    CAS  Google Scholar 

  43. Wang, Z. K.; Nie, J. Y.; Qin, W.; Hu, Q. L.; Tang, B. Z. Gelation process visualized by aggregation-induced emission fluorogens. Nat. Commun. 2016, 7, 12033.

    Google Scholar 

  44. Makrocka-Rydzyk, M.; Woźniak-Braszak, A.; Jurga, K.; Jurga, S. Local motions in poly (ethylene-co-norbornene) studied by 1H NMR relaxometry. Solid State Nucl. Magn. Reson. 2015, 71, 67–72.

    CAS  Google Scholar 

  45. Yu, H. C.; Zheng, S. Y.; Fang, L. T.; Ying, Z. M.; Du, M.; Wang, J.; Ren, K. F.; Wu, Z. L.; Zheng, Q. Reversibly transforming a highly swollen polyelectrolyte hydrogel to an extremely tough one and its application as a tubular grasper. Adv. Mater. 2020, 32, 2005171.

    CAS  Google Scholar 

  46. Yu, H. C.; Hao, X. P.; Zhang, C. W.; Zheng, S. Y.; Du, M.; Liang, S. M.; Wu, Z. L.; Zheng, Q. Engineering tough metallosupramolecular hydrogel films with kirigami structures for compliant soft electronics. Small 2021, 17, 2103836.

    CAS  Google Scholar 

  47. Liu, Y.; Lei, Y.; Hua, L. Q.; Lu, J. L.; Wang, K. J.; Zhao, C. Z. Biomimetic self-deformation of polymer interpenetrating network with stretch-induced anisotropicity. Chem. Mater. 2021, 33, 8351–8359.

    CAS  Google Scholar 

  48. Steck, J.; Kim, J.; Yang, J. W.; Hassan, S.; Suo, Z. G. Topological adhesion. I. Rapid and strong topohesives. Extreme Mech. Lett. 2020, 39, 100803.

    Google Scholar 

Download references

Acknowledgement

This work was funded from the National Natural Science Foundation of China (No. 51903250).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Botian Li or Qiong Zhou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Yan, B., Wang, J. et al. A multistimuli-responsive fluorescent hydrogel based on a fluorescence response to macromolecular segmental motion. Nano Res. 16, 12098–12105 (2023). https://doi.org/10.1007/s12274-022-5361-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5361-8

Keywords

Navigation