Log in

RNA sequencing-based optimization of biological lipid droplets for sonodynamic therapy to reverse tumor hypoxia and elicit robust immune response

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mitochondria-targeted sonodynamic therapy (SDT) is a promising strategy to inhibit tumor growth and activate the anti-tumor immune responses. Identifying the mechanisms underlying mitochondria-targeted SDT, further optimizing its efficacy, and develo** novel sonosensitizer carriers with good biocompatibility pose major challenges to the clinical practice of SDT. In this study, we investigated the mechanisms of mitochondria-targeted SDT and demonstrated that it suppressed the mitochondrial electron transport chain (ETC) in pancreatic cancer cells through RNA-sequencing analysis. Based on these findings, we constructed the functional lipid droplets (LDs) (CPI-613/IR780@LDs), which combined mitochondria-targeted SDT with the tricarboxylic acid (TCA) cycle inhibitor CPI-613. CPI-613/IR780@LDs synergistically inhibited the TCA cycle and the ETC of mitochondrial aerobic respiration to reduce oxygen consumption and increase reactive oxygen species (ROS) generation at the tumor site, thus enhancing the efficacy of SDT in hypoxic pancreatic cancer. Moreover, the combination of mitochondria-targeted SDT and anti-PD-1 antibody exhibited excellent tumor inhibition and activated anti-tumor immune responses by increasing tumor-infiltrating CD8+ T cells and reducing regulatory T cells, synergistically arresting the growth of both primary and metastatic pancreatic tumors. Meanwhile, lipid droplets are cell-derived biological carriers with natural mitochondrial targeting ability and can achieve efficient hydrophobic drug loading through active phagocytosis. Therefore, the functional lipid droplet-based SDT combined with anti-PD-1 antibody holds great potential in the clinical treatment of hypoxic pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, W.; Chawla, A.; O’Reilly, E. M. Pancreatic cancer: A review. JAMA 2021, 326, 851–862.

    Article  CAS  Google Scholar 

  2. The Lancet Gastroenterology & Hepatology. Pancreatic cancer: A state of emergency? Lancet Gastroenterol. Hepatol. 2021, 6, 81.

    Article  Google Scholar 

  3. Son, S. B.; Kim, J. H.; Wang, X. W.; Zhang, C. L.; Yoon, S. A.; Shin, J.; Sharma, A.; Lee, M. H.; Cheng, L.; Wu, J. S. et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020, 49, 3244–3261.

    Article  CAS  Google Scholar 

  4. Canavese, G.; Ancona, A.; Racca, L.; Canta, M.; Dumontel, B.; Barbaresco, F.; Limongi, T.; Cauda, V. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem. Eng. J. 2018, 340, 155–172.

    Article  CAS  Google Scholar 

  5. Kim, H. M.; Cho, B. R. Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 2015, 115, 5014–5055.

    Article  CAS  Google Scholar 

  6. Zhang, Q. Y.; Bao, C. X.; Cai, X. J.; **, L. W.; Sun, L. L.; Lang, Y. H.; Li, L. B. Sonodynamic therapy-assisted immunotherapy: A novel modality for cancer treatment. Cancer Sci. 2018, 109, 1330–1345.

    Article  CAS  Google Scholar 

  7. Inui, T.; Makita, K.; Miura, H.; Matsuda, A.; Kuchiike, D.; Kubo, K.; Mette, M.; Uto, Y.; Nishikata, T.; Hori, H. et al. Case report: A breast cancer patient treated with GcMAF, sonodynamic therapy and hormone therapy. Anticancer Res. 2014, 34, 4589–4593.

    Google Scholar 

  8. Shi, X. E.; Zhang, X.; Zhang, X. L.; Guo, H. Z.; Wang, S. The integration of reactive oxygen species generation and prodrug activation for cancer therapy. BIO Integr. 2022, 3, 32–40.

    CAS  Google Scholar 

  9. Zuo, S.; Zhang, Y.; Wang, Z.; Wang, J. Mitochondria-targeted mesoporous titanium dioxide nanoplatform for synergistic nitric oxide gas-sonodynamic therapy of breast cancer. Int. J. Nanomedicine. 2022, 17, 989–1002.

    Article  CAS  Google Scholar 

  10. Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 2010, 9, 447–464.

    Article  CAS  Google Scholar 

  11. Vasan, K.; Werner, M.; Chandel, N. S. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 2020, 32, 341–352.

    Article  CAS  Google Scholar 

  12. Frattaruolo, L.; Brindisi, M.; Curcio, R.; Marra, F.; Dolce, V.; Cappello, A. R. Targeting the mitochondrial metabolic network: A promising strategy in cancer treatment. Int. J. Mol. Sci. 2020, 27, 6014.

    Article  Google Scholar 

  13. Faubert, B.; Solmonson, A.; DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science 2020, 368, eaaw5473.

    Article  CAS  Google Scholar 

  14. Cluntun, A. A.; Lukey, M. J.; Cerione, R. A.; Locasale, J. W. Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer 2017, 3, 169–180.

    Article  CAS  Google Scholar 

  15. DeBerardinis, R. J.; Chandel, N. S. We need to talk about the Warburg effect. Nat. Metab. 2020, 2, 127–129.

    Article  Google Scholar 

  16. Kalyanaraman, B.; Cheng, G.; Hardy, M.; Ouari, O.; Lopez, M.; Joseph, J.; Zielonka, J.; Dwinell, M. B. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biol. 2018, 14, 316–327.

    Article  CAS  Google Scholar 

  17. Pustylnikov, S.; Costabile, F.; Beghi, S.; Facciabene, A. Targeting mitochondria in cancer: Current concepts and immunotherapy approaches. Transl. Res. 2018, 202, 35–51.

    Article  CAS  Google Scholar 

  18. Orang, A. V.; Petersen, J.; McKinnon, R. A.; Michael, M. Z. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol. Metab. 2019, 23, 98–126.

    Article  CAS  Google Scholar 

  19. Anderson, R. G.; Ghiraldeli, L. P.; Pardee, T. S. Mitochondria in cancer metabolism, an organelle whose time has come? Biochim. Biophys. Acta Rev. Cancer 2018, 1870, 96–102.

    Article  CAS  Google Scholar 

  20. Nowak, K. M.; Schwartz, M. R.; Breza, V. R.; Price, R. J. Sonodynamic therapy: Rapid progress and new opportunities for non-invasive tumor cell killing with sound. Cancer Lett. 2022, 532, 215592.

    Article  CAS  Google Scholar 

  21. Liang, S.; Deng, X. R.; Ma, P. A.; Cheng, Z. Y.; Lin, J. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv. Mater. 2020, 32, 2003214.

    Article  CAS  Google Scholar 

  22. Qu, F.; Wang, P.; Zhang, K.; Shi, Y.; Li, Y. X.; Li, C. R.; Lu, J. H.; Liu, Q. H.; Wang, X. B. Manipulation of mitophagy by “all-in-one” nanosensitizer augments sonodynamic glioma therapy. Autophagy 2020, 16, 1413–1435.

    Article  CAS  Google Scholar 

  23. Gao, Y.; Tong, H. B.; Li, J. L.; Li, J. C.; Huang, D.; Shi, J. S.; **a, B. Mitochondria-targeted nanomedicine for enhanced efficacy of cancer therapy. Front. Bioeng. Biotechnol. 2021, 9, 720508.

    Article  Google Scholar 

  24. Huang, P.; Qian, X. Q.; Chen, Y.; Yu, L. D.; Lin, H.; Wang, L. Y.; Zhu, Y. F.; Shi, J. L. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J. Am. Chem. Soc. 2017, 139, 1275–1284.

    Article  CAS  Google Scholar 

  25. Chen, J.; Luo, H. L.; Liu, Y.; Zhang, W.; Li, H. X.; Luo, T.; Zhang, K.; Zhao, Y. X.; Liu, J. J. Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano 2017, 11, 12849–12862.

    Article  CAS  Google Scholar 

  26. Li, Y. K.; Zhao, Z.; Liu, H.; Fetse, J. P.; Jain, A.; Lin, C. Y.; Cheng, K. Development of a tumor-responsive nanopolyplex targeting pancreatic cancer cells and stroma. ACS Appl. Mater. Interfaces 2019, 11, 45390–45403.

    Article  CAS  Google Scholar 

  27. Cao, Y.; Wu, T. T.; Dai, W. H.; Dong, H. F.; Zhang, X. J. TiO2 nanosheets with the Au nanocrystal-decorated edge for mitochondria-targeting enhanced sonodynamic therapy. Chem. Mater. 2019, 31, 9105–9114.

    Article  CAS  Google Scholar 

  28. Liang, T. X. Z.; Wen, D.; Zhong, X. T.; Jiang, L. P.; Zhu, J. J.; Gu, Z. Therapeutic potential of adipose tissue. Sci. Bull. 2020, 65, 1702–1704.

    Article  CAS  Google Scholar 

  29. Liang, T. X. Z.; Wen, D.; Chen, G. J.; Chan, A.; Chen, Z. W.; Li, H. J.; Wang, Z. J.; Han, X.; Jiang, L. P.; Zhu, J. J. et al. Adipocyte-derived anticancer lipid droplets. Adv. Mater. 2021, 33, 2100629.

    Article  CAS  Google Scholar 

  30. Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.

    Article  CAS  Google Scholar 

  31. Wang, L.; Niu, C. C. IR780-based nanomaterials for cancer imaging and therapy. J. Mater. Chem. B 2021, 9, 4079–4097.

    Article  CAS  Google Scholar 

  32. Bellio, C.; DiGloria, C.; Spriggs, D. R.; Foster, R.; Growdon, W. B.; Rueda, B. R. The metabolic inhibitor CPI-613 negates treatment enrichment of ovarian cancer stem cells. Cancers (Basel) 2019, 11, 1678.

    Article  CAS  Google Scholar 

  33. Stuart, S. D.; Schauble, A.; Gupta, S.; Kennedy, A. D.; Keppler, B. R.; Bingham, P. M.; Zachar, Z. A strategically designed small molecule attacks alpha-ketoglutarate dehydrogenase in tumor cells through a redox process. Cancer Metab. 2014, 2, 4.

    Article  Google Scholar 

  34. Alistar, A.; Morris, B. B.; Desnoyer, R.; Klepin, H. D.; Hosseinzadeh, K.; Clark, C.; Cameron, A.; Leyendecker, J.; D’Agostino, R. Jr.; Topaloglu, U. et al. Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in patients with metastatic pancreatic cancer: A single-centre, open-label, dose-escalation, phase 1 trial. Lancet Oncol 2017, 18, 770–778.

    Article  CAS  Google Scholar 

  35. Gao, L. X.; Xu, Z. G.; Huang, Z.; Tang, Y.; Yang, D. L.; Huang, J. H.; He, L. L.; Liu, M. R.; Chen, Z. Z.; Teng, Y. CPI-613 rewires lipid metabolism to enhance pancreatic cancer apoptosis via the AMPK-ACC signaling. J. Exp. Clin. Cancer Res. 2020, 39, 73.

    Article  CAS  Google Scholar 

  36. Lin, Y. X.; Xu, J. X.; Lan, H. Y. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019, 12, 76.

    Article  Google Scholar 

  37. Ganesh, K.; Massagué, J. Targeting metastatic cancer. Nat. Med. 2021, 27, 34–44.

    Article  CAS  Google Scholar 

  38. Liu, J.; Xu, M. Z.; Yuan, Z. Immunoscore guided cold tumors to acquire “temperature” through integrating physicochemical and biological methods. BIO Integr. 2020, 1, 6–14.

    Article  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge the financial support from the National Natural Science Foundation of China (Nos. 32201138, 82030048, and 82230069) and the Key Research and Development Program of Zhejiang Province (No. 2019C03077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Zhang or Pintong Huang.

Electronic Supplementary Material

12274_2022_5340_MOESM1_ESM.pdf

RNA sequencing-based optimization of biological lipid droplets for sonodynamic therapy to reverse tumor hypoxia and elicit robust immune response

Supplementary material, approximately 84 KB.

Supplementary material, approximately 46 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Wang, X., Luo, J. et al. RNA sequencing-based optimization of biological lipid droplets for sonodynamic therapy to reverse tumor hypoxia and elicit robust immune response. Nano Res. 16, 7187–7198 (2023). https://doi.org/10.1007/s12274-022-5340-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5340-0

Keywords

Navigation