Log in

Heterogeneous system synthesis of high quality PbS quantum dots for efficient infrared solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As promising optoelectronic materials, lead sulfide quantum dots (PbS QDs) have attracted great attention. However, their applications are substantially limited by the QD quality and/or complicated synthesis. Herein, a facile new synthesis is developed for highly monodisperse and halide passivated PbS QDs. The new synthesis is based on a heterogeneous system containing a PbCl2−Pb(OA)2 solid-liquid precursor solution. The solid PbCl2 inhibits the diffusion of monomers and maintains a high oversaturation condition for the growth of PbS QDs, resulting in high monodispersities. In addition, the PbCl2 gives rise to halide passivation on the PbS QDs, showing excellent stability in air. The high monodispersity and good passivation endow these PbS QDs with outstanding optoelectronic properties, demonstrated by a 9.43% power conversion efficiency of PbS QD solar cells with a bandgap of ∼ 0.95 eV (1,300 nm). We believe that this heterogeneous strategy opens up a new avenue optimizing for the synthesis and applications of QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z. Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study. ACS Nano 2011, 5, 2004–2012.

    Article  CAS  Google Scholar 

  2. Zhang, J. B.; Crisp, R. W.; Gao, J. B.; Kroupa, D. M.; Beard, M. C.; Luther, J. M. Synthetic conditions for high-accuracy size control of PbS quantum dots. J. Phys. Chem. Lett. 2015, 6, 1830–1833.

    Article  CAS  Google Scholar 

  3. Giansante, C.; Infante, I.; Fabiano, E.; Grisorio, R.; Suranna, G. P.; Gigli, G. “Darker-than-Black” PbS quantum dots:Enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. J. Am. Chem. Soc. 2015, 137, 1875–1886.

    Article  CAS  Google Scholar 

  4. Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

    Article  CAS  Google Scholar 

  5. Liu, M. X.; Voznyy, O.; Sabatini, R.; De Arquer, F. P. G.; Munir, R.; Balawi, A. H.; Lan, X. Z.; Fan, F. J.; Walters, G.; Kirmani, A. R. et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2017, 16, 258–263.

    Article  CAS  Google Scholar 

  6. Mcdonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142.

    Article  CAS  Google Scholar 

  7. De Arquer, F. P. G.; Armin, A.; Meredith, P.; Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100.

    Article  Google Scholar 

  8. Choi, M. J.; De Arquer, F. P. G.; Proppe, A. H.; Seifitokaldani, A.; Choi, J.; Kim, J.; Baek, S. W.; Liu, M. X.; Sun, B.; Biondi, M. et al. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat. Commun. 2020, 11, 103.

    Article  CAS  Google Scholar 

  9. Yin, X. T.; Zhang, C.; Guo, Y. X.; Yang, Y. W.; **ng, Y. L.; Que, W. X. PbS QD-based photodetectors: Future-oriented near-infrared detection technology. J. Mater. Chem. C 2021, 9, 417–438.

    Article  CAS  Google Scholar 

  10. Saran, R.; Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photon. 2016, 10, 81–92.

    Article  CAS  Google Scholar 

  11. Pradhan, S.; Stavrinadis, A.; Gupta, S.; Christodoulou, S.; Konstantatos, G. Breaking the open-circuit voltage deficit floor in PbS quantum dot solar cells through synergistic ligand and architecture engineering. ACS Energy Lett. 2017, 2, 1444–1449.

    Article  CAS  Google Scholar 

  12. Wang, Y. J.; Lu, K. Y.; Han, L.; Liu, Z. K.; Shi, G. Z.; Fang, H. H.; Chen, S.; Wu, T.; Yang, F.; Gu, M. F. et al. In situ passivation for efficient PbS quantum dot solar cells by precursor engineering. Adv. Mater. 2018, 30, 1704871.

    Article  Google Scholar 

  13. Green, P. B.; Villanueva, F. Y.; Demmans, K. Z.; Imperiale, C. J.; Hasham, M.; Nikbin, E.; Howe, J. Y.; Burns, D. C.; Wilson, M. W. B. PbS nanocrystals made using excess lead chloride have a halide-perovskite-like surface. Chem. Mater. 2021, 33, 9270–9284.

    Article  CAS  Google Scholar 

  14. Hines, M. A.; Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844–1849.

    Article  CAS  Google Scholar 

  15. Ning, Z. J.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J. X.; Li, M.; Kirmani, A. R.; Sun, J. P.; Minor, J. et al. Air-stable n-type colloidal quantum dot solids. Nat. Mater. 2014, 13, 822–828.

    Article  CAS  Google Scholar 

  16. Wu, M. F.; Congreve, D. N.; Wilson, M. W. B.; Jean, J.; Geva, N.; Welborn, M.; Van Voorhis, T.; Bulović, V.; Bawendi, M. G.; Baldo, M. A. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 2016, 10, 31–34.

    Article  CAS  Google Scholar 

  17. Kirkwood, N.; Monchen, J. O. V.; Crisp, R. W.; Grimaldi, G.; Bergstein, H. A. C.; Du Fossé, I.; Van Der Stam, W.; Infante, I.; Houtepen, A. J. Finding and fixing traps in II–VI and III–V colloidal quantum dots: The importance of Z-type ligand passivation. J. Am. Chem. Soc. 2018, 140, 15712–15723.

    Article  CAS  Google Scholar 

  18. Ning, Z. J.; Ren, Y.; Hoogland, S.; Voznyy, O.; Levina, L.; Stadler, P.; Lan, X. Z.; Zhitomirsky, D.; Sargent, E. H. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 2012, 24, 6295–6299.

    Article  CAS  Google Scholar 

  19. Sun, B.; Vafaie, M.; Levina, L.; Wei, M. Y.; Dong, Y. T.; Gao, Y. J.; Kung, H. T.; Biondi, M.; Proppe, A. H.; Chen, B. et al. Ligand-assisted reconstruction of colloidal quantum dots decreases trap state density. Nano Lett. 2020, 20, 3694–3702.

    Article  CAS  Google Scholar 

  20. Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536–18548.

    Article  CAS  Google Scholar 

  21. Weidman, M. C.; Beck, M. E.; Hoffman, R. S.; Prins, F.; Tisdale, W. A. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 2014, 8, 6363–6371.

    Article  CAS  Google Scholar 

  22. Green, P. B.; Li, Z. Q.; Wilson, M. W. B. PbS nanocrystals made with excess PbCl2 have an intrinsic shell that reduces their stokes shift. J. Phys. Chem. Lett. 2019, 10, 5897–5901.

    Article  CAS  Google Scholar 

  23. Winslow, S. W.; Liu, Y.; Swan, J. W.; Tisdale, W. A. Quantification of a PbClx. shell on the surface of PbS nanocrystals. ACS Mater. Lett. 2019, 1, 209–216.

    Article  CAS  Google Scholar 

  24. Colbert, A. E.; Placencia, D.; Ratcliff, E. L.; Boercker, J. E.; Lee, P.; Aifer, E. H.; Tischler, J. G. Enhanced infrared photodiodes based on PbS/PbClx. core/shell nanocrystals. ACS Appl. Mater. Interfaces 2021, 13, 58916–58926.

    Article  CAS  Google Scholar 

  25. Zhang, C. W.; **a, Y.; Zhang, Z. M.; Huang, Z.; Lian, L. Y.; Miao, X. S.; Zhang, D. L.; Beard, M. C.; Zhang, J. B. Combination of cation exchange and quantized Ostwald ripening for controlling size distribution of lead chalcogenide quantum dots. Chem. Mater. 2017, 29, 3615–3622.

    Article  CAS  Google Scholar 

  26. **a, Y.; Liu, S. S.; Wang, K.; Yang, X. K.; Lian, L. Y.; Zhang, Z. M.; He, J. G.; Liang, G. J.; Wang, S.; Tan, M. L. et al. Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 2020, 30, 1907379.

    Article  CAS  Google Scholar 

  27. Zhao, Y. M.; Peng, Y. L.; Shan, C.; Lu, Z.; Wojtas, L.; Zhang, Z. J.; Zhang, B.; Feng, Y. Q.; Ma, S. Q. Metallocorrole-based porous organic polymers as a heterogeneous catalytic nanoplatform for efficient carbon dioxide conversion. Nano Res. 2022, 15, 1145–1152.

    Article  CAS  Google Scholar 

  28. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  29. Wei, Y. C.; Zhao, Y.; Liu, C. P.; Wang, Z. Y.; Jiang, F. L.; Liu, Y. S.; Zhao, Q.; Yu, D. P.; Hong, M. C. Constructing all-inorganic perovskite/fluoride nanocomposites for efficient and ultra-stable perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2106386.

    Article  CAS  Google Scholar 

  30. Suh, Y. H.; Lee, S.; Jung, S. M.; Bang, S. Y.; Yang, J. J.; Fan, X. B.; Zhan, S. J.; Samarakoon, C.; Jo, J. W.; Kim, Y. et al. Engineering core size of InP quantum dot with incipient ZnS for blue emission. Adv. Opt. Mater. 2022, 10, 2102372.

    Article  CAS  Google Scholar 

  31. Li, M. Y.; Chen, S. W.; Zhao, X. Z.; **ong, K.; Wang, B.; Shah, U. A.; Gao, L.; Lan, X. Z.; Zhang, J. B.; Hsu, H. Y. et al. Matching charge extraction contact for infrared PbS colloidal quantum dot solar cells. Small 2022, 18, 2105495.

    Article  CAS  Google Scholar 

  32. Zhang, J. B.; Chernomordik, B. D.; Crisp, R. W.; Kroupa, D. M.; Luther, J. M.; Miller, E. M.; Gao, J. B.; Beard, M. C. Preparation of Cd/Pb chalcogenide heterostructured janus particles via controllable cation exchange. ACS Nano 2015, 9, 7151–7163.

    Article  CAS  Google Scholar 

  33. Liu, X. Y.; Liu, Y. X.; Xu, S.; Geng, C.; **e, Y. Y.; Zhang, Z. H.; Zhang, Y. H.; Bi, W. G. Formation of “steady size” state for accurate size control of CdSe and CdS quantum dots. J. Phys. Chem. Lett. 2017, 8, 3576–3580.

    Article  CAS  Google Scholar 

  34. Ng, T. W.; Chan, C. Y.; Lo, M. F.; Guan, Z. Q.; Lee, C. S. Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties. J. Mater. Chem. A 2015, 3, 9081–9085.

    Article  CAS  Google Scholar 

  35. Fan, J. Z.; Andersen, N. T.; Biondi, M.; Todorović, P.; Sun, B.; Ouellette, O.; Abed, J.; Sagar, L. K.; Choi, M. J.; Hoogland, S. et al. Mixed lead halide passivation of quantum dots. Adv. Mater. 2019, 31, 1904304.

    Article  CAS  Google Scholar 

  36. Yuan, L.; Patterson, R.; Cao, W. K.; Zhang, Z. W.; Zhang, Z. L.; Stride, J. A.; Reece, P.; Conibeer, G.; Huang, S. J. Air-stable PbS quantum dots synthesized with slow reaction kinetics via a PbBr2 precursor. RSC Adv. 2015, 5, 68579–68586.

    Article  CAS  Google Scholar 

  37. Woo, J. Y.; Ko, J. H.; Song, J. H.; Kim, K.; Choi, H.; Kim, Y. H.; Lee, D. C.; Jeong, S. Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100). J. Am. Chem. Soc. 2014, 136, 8883–8886.

    Article  CAS  Google Scholar 

  38. Elleman, A. J.; Wilman, H. The structure and epitaxy of lead chloride deposits formed from lead sulphide and sodium chloride. Proc. Phys. Soc. Sect. A 1949, 62, 344–355.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2021YFA0715502 and 2021YFA0715500), the National Natural Science Foundation of China (Nos. 61974052 and 61904065), the Innovation Project of Optics Valley Laboratory (No. OVL2021BG009), and the Fund from Science, Technology and Innovation Commission of Shenzhen Municipality (No. GJHZ20210705142540010), the Key R&D Program of Hubei Province (No. 2021BAA014), and the International Science and Technology Cooperation Project of Hubei Province (No. 2021EHB010). The authors thank the Testing Center of Huazhong University of Science and Technology (HUST).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Gao, Jianbing Zhang or Jiang Tang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Li, M., Liu, Y. et al. Heterogeneous system synthesis of high quality PbS quantum dots for efficient infrared solar cells. Nano Res. 16, 5750–5755 (2023). https://doi.org/10.1007/s12274-022-5251-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5251-0

Keywords

Navigation