Log in

A review on lithium-sulfur batteries: Challenge, development, and perspective

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) battery is recognized as one of the promising candidates to break through the specific energy limitations of commercial lithium-ion batteries given the high theoretical specific energy, environmental friendliness, and low cost. Over the past decade, tremendous progress have been achieved in improving the electrochemical performance especially the lifespan by various strategies mainly concentrated on the sulfur cathodes. In this review, the fundamental electrochemistry of sulfur cathode and lithium anode is revealed to understand the current dilemmas. And the advances achieved through diverse strategies are comprehensively summarized, which involves lithium polysulfides (LiPSs) limitation, sulfur redox reaction regulation and electrocatalysis in sulfur cathode and artificial solid electrolyte interface (SEI), electrolyte design, and structured anode in lithium anode. Additionally, the differences between laboratory level coin cells and actual pouch cells need to be addressed that only few reports on practical Li-S pouch cell are available due to the unexpected problems on both sulfur cathode and lithium anode which are masked at lithium and electrolyte excess. Lastly, the challenges and perspective toward the practical Li-S batteries are also offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

    Article  Google Scholar 

  2. Huang, Y. X.; Wu, F.; Chen, R. J. Thermodynamic analysis and kinetic optimization of high-energy batteries based on multi-electron reactions. Nat. Sci. Rev. 2020, 7, 1367–1386.

    Article  CAS  Google Scholar 

  3. Li, G. R.; Chen, Z. W.; Lu, J. Lithium-sulfur batteries for commercial applications. Chem 2018, 4, 3–7.

    Article  CAS  Google Scholar 

  4. Lei, J.; Liu, T.; Chen, J. J.; Zheng, M. S.; Zhang, Q.; Mao, B. W.; Dong, Q. F. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries. Chem 2020, 6, 2533–2557.

    Article  CAS  Google Scholar 

  5. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  CAS  Google Scholar 

  6. Yan, J. H.; Liu, X. B.; Li, B. Y. Capacity fade analysis of sulfur cathodes in lithium-sulfur batteries. Adv. Sci. 2016, 3, 1600101.

    Article  Google Scholar 

  7. Zhou, L.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. Host materials anchoring polysulfides in Li-S batteries reviewed. Adv. Energy Mater. 2021, 11, 2001304.

    Article  CAS  Google Scholar 

  8. Liu, Y. T.; Elias, Y.; Meng, J. S.; Aurbach, D.; Zou, R. Q.; **a, D. G.; Pang, Q. Q. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5, 2323–2364.

    Article  CAS  Google Scholar 

  9. Yang, X. F.; Gao, X. J.; Sun, Q.; Jand, S. P.; Yu, Y.; Zhao, Y.; Li, X.; Adair, K.; Kuo, L. Y.; Rohrer, J. et al. Promoting the transformation of Li2S2 to Li2S: Significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv. Mater. 2019, 31, 1901220.

    Article  Google Scholar 

  10. Zhou, G. M.; Tian, H. Z.; **, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; She, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

    Article  CAS  Google Scholar 

  11. Gorlin, Y.; Patel, M. U. M.; Freiberg, A.; He, Q.; Piana, M.; Tromp, M.; Gasteiger, H. A. Understanding the charging mechanism of lithium-sulfur batteries using spatially resolved operando X-ray absorption spectroscopy. J. Electrochem. Soc. 2016, 163, A930–A939.

    Article  CAS  Google Scholar 

  12. Cañas, N. A.; Wolf, S.; Wagner, N.; Friedrich, K. A. In situ X-ray diffraction studies of lithium-sulfur batteries. J. Power Sources 2013, 226, 313–319.

    Article  Google Scholar 

  13. Qiu, Y. C.; Rong, G. L.; Yang, J.; Li, G. Z.; Ma, S.; Wang, X. L.; Pan, Z. H.; Hou, Y.; Liu, M. N.; Ye, F. M. et al. Highly nitridated graphene-Li2S cathodes with stable modulated cycles. Adv. Energy Mater. 2015, 5, 1501369.

    Article  Google Scholar 

  14. Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction. Nat. Energy 2017, 2, 17069.

    Article  CAS  Google Scholar 

  15. Zheng, D.; Wang, G. W.; Liu, D.; Si, J. Y.; Ding, T. Y.; Qu, D. Y.; Yang, X. Q.; Qu, D. Y. The progress of Li-S batteries-understanding of the sulfur redox mechanism: Dissolved polysulfide ions in the electrolytes. Adv. Mater. Technol. 2018, 3, 1700233.

    Article  Google Scholar 

  16. Marceau, H.; Kim, C. S.; Paolella, A.; Ladouceur, S.; Lagacé, M.; Chaker, M.; Vijh, A.; Guerfi, A.; Julien, C. M.; Mauger, A. et al. In operando scanning electron microscopy and ultraviolet—visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte. J. Power Sources 2016, 319, 247–254.

    Article  CAS  Google Scholar 

  17. Barchasz, C.; Molton, F.; Duboc, C.; Leprêtre, J. C.; Patoux, S.; Alloin, F. Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification. Anal. Chem. 2012, 84, 3973–3980.

    Article  CAS  Google Scholar 

  18. Cuisinier, M.; Cabelguen, P. E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L. F. Sulfur speciation in Li-S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 2013, 4, 3227–3232.

    Article  CAS  Google Scholar 

  19. Zheng, D.; Liu, D.; Harris, J. B.; Ding, T. Y.; Si, J. Y.; Andrew, S.; Qu, D. Y.; Yang, X. Q.; Qu, D. Y. Investigation of the Li-S battery mechanism by real-time monitoring of the changes of sulfur and polysulfide species during the discharge and charge. ACS Appl. Mater. Interfaces. 2017, 9, 4326–4332.

    Article  CAS  Google Scholar 

  20. Steudel, R.; Chivers, T. The role of polysulfide dianions and radical anions in the chemical, physical, and biological sciences, including sulfur-based batteries. Chem. Soc. Rev. 2019, 48, 3279–3319.

    Article  CAS  Google Scholar 

  21. Yu, Z. Y.; Shao, Y.; Ma, L. P.; Liu, C. Z.; Gu, C. Y.; Liu, J. J.; He, P.; Li, M. X.; Nie, Z. X.; Peng, Z. Q. et al. Revealing the sulfur redox paths in a Li-S battery by an in situ hyphenated technique of electrochemistry and mass spectrometry. Adv. Mater. 2022, 34, 2106618.

    Article  CAS  Google Scholar 

  22. Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 2015, 27, 5203–5209.

    Article  CAS  Google Scholar 

  23. Mikhaylik, Y. V.; Akridge, J. R. Low temperature performance of Li-S batteries. J. Electrochem. Soc. 2003, 150, A306–A311.

    Article  CAS  Google Scholar 

  24. Wang, D. R.; Shah, D. B.; Maslyn, J. A.; Loo, W. S.; Wujcik, K. H.; Nelson, E. J.; Latimer, M. J.; Feng, J.; Prendergast, D.; Pascal, T. A. et al. Rate constants of electrochemical reactions in a lithium-sulfur cell determined by operando X-ray absorption spectroscopy. J. Electrochem. Soc. 2018, 165, A3487–A3495.

    Article  CAS  Google Scholar 

  25. Dey, A. N. Lithium anode film and organic and inorganic electrolyte batteries. Thin Solid Films 1977, 43, 131–171.

    Article  CAS  Google Scholar 

  26. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  CAS  Google Scholar 

  27. Peled, E. The Electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid—electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047–2051.

    Article  CAS  Google Scholar 

  28. Tan, S. J.; Wang, W. P.; Tian, Y. F.; **n, S.; Guo, Y. G. Advanced electrolytes enabling safe and stable rechargeable Li-metal batteries: Progress and prospects. Adv. Funct. Mater. 2021, 2105253.

  29. Xu, R.; Shen, X.; Ma, X. X.; Yan, C.; Zhang, X. Q.; Chen, X.; Ding, J. F.; Huang, J. Q. Identifying the critical anion—cation coordination to regulate the electric double layer for an efficient lithium metal—anode interface. Angew. Chem., Int. Ed. 2021, 60, 4215–4220.

    Article  CAS  Google Scholar 

  30. Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144, L208–L210.

    Article  CAS  Google Scholar 

  31. Aurbach, D. Review of selected electrode—solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 2000, 89, 206–218.

    Article  CAS  Google Scholar 

  32. Eshetu, G. G.; Judez, X.; Li, C. M.; Martinez-Ibañez, M.; Gracia, I.; Bondarchuk, O.; Carrasco, J.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion’s chemistry-induced anomalous synergistic effect. J. Am. Chem. Soc. 2018, 140, 9921–9933.

    Article  CAS  Google Scholar 

  33. Xu, Y. B.; Wu, H. P.; He, Y.; Chen, Q. S.; Zhang, J. G.; Xu, W.; Wang, C. M. Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy. Nano Lett. 2020, 20, 418–425.

    Article  CAS  Google Scholar 

  34. Sonoki, H.; Matsui, M.; Imanishi, N. Effect of anion species in early stage of SEI formation process. J. Electrochem. Soc. 2019, 166, A3593–A3598.

    Article  CAS  Google Scholar 

  35. Wang, J. Y.; Huang, W.; Pei, A.; Li, Y. Z.; Shi, F. F.; Yu, X. Y.; Cui, Y. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 2019, 4, 664–670.

    Article  CAS  Google Scholar 

  36. Liu, T. F.; Hu, H. L.; Ding, X. F.; Yuan, H. D.; **, C. B.; Nai, J. W.; Liu, Y. J.; Wang, Y.; Wan, Y. H.; Tao, X. Y. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 2020, 30, 346–366.

    Article  Google Scholar 

  37. Li, Y. Z.; Li, Y. B.; Pei, A.; Yan, K.; Sun, Y. M.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017, 358, 506–510.

    Article  CAS  Google Scholar 

  38. Shan, X. Y.; Zhong, Y.; Zhang, L. J.; Zhang, Y. Q.; **a, X. H.; Wang, X. L.; Tu, J. P. A brief review on solid—electrolyte interphase composition characterization technology for lithium metal batteries: Challenges and perspectives. J. Phys. Chem. C 2021, 125, 19060–19080.

    Article  CAS  Google Scholar 

  39. Zhang, Z. W.; Li, Y. Z.; Xu, R.; Zhou, W. J.; Li, Y. B.; Oyakhire, S. T.; Wu, Y. C.; Xu, J. W.; Wang, H. S.; Yu, Z. A. et al. Capturing the swelling of solid—electrolyte interphase in lithium metal batteries. Science 2022, 375, 66–70.

    Article  CAS  Google Scholar 

  40. Gong, C.; Pu, S. D.; Gao, X. W.; Yang, S. X.; Liu, J. L.; Ning, Z. Y.; Rees, G. J.; Capone, I.; Pi, L. Q.; Liu, B. Y. et al. Revealing the role of fluoride-rich battery electrode interphases by operando transmission electron microscopy. Adv. Energy Mater. 2021, 11, 2003118.

    Article  CAS  Google Scholar 

  41. Efaw, C. M.; Lu, B. Y.; Lin, Y. X.; Pawar, G. M.; Chinnam, P. R.; Hurley, M. F.; Dufek, E. J.; Meng, Y. S.; Li, B. A closed-host bi-layer dense/porous solid—electrolyte interphase for enhanced lithium-metal anode stability. Mater. Today 2021, 49, 48–58.

    Article  CAS  Google Scholar 

  42. He, M. F.; Guo, R.; Hobold, G. M.; Gao, H. N.; Gallant, B. M. The intrinsic behavior of lithium fluoride in solid—electrolyte interphases on lithium. Proc. Natl. Acad. Sci. USA 2020, 117, 73–79.

    Article  CAS  Google Scholar 

  43. Huang, W.; Wang, H. S.; Boyle, D. T.; Li, Y. Z.; Cui, Y. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid—electrolyte interphases by cryogenic electron microscopy. ACS Energy Lett. 2020, 5, 1128–1135.

    Article  CAS  Google Scholar 

  44. Li, T.; Zhang, X. Q.; Shi, P.; Zhang, Q. Fluorinated solid—electrolyte interphase in high-voltage lithium metal batteries. Joule 2019, 3, 2647–2661.

    Article  CAS  Google Scholar 

  45. Matsui, M. Study on electrochemically deposited Mg metal. J. Power Sources 2011, 196, 7048–7055.

    Article  CAS  Google Scholar 

  46. Nagy, K. S.; Kazemiabnavi, S.; Thornton, K.; Siegel, D. J. Thermodynamic overpotentials and nucleation rates for electrodeposition on metal anodes. ACS Appl. Mater. Interfaces 2019, 11, 7954–7964.

    Article  CAS  Google Scholar 

  47. Ling, C.; Banerjee, D.; Matsui, M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology. Electrochim. Acta 2012, 76, 270–274.

    Article  CAS  Google Scholar 

  48. Jäckle, M.; Groß, A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 2014, 141, 174710.

    Article  Google Scholar 

  49. Akolkar, R. Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J. Power Sources 2014, 246, 84–89.

    Article  CAS  Google Scholar 

  50. Yan, H. H.; Bie, Y. H.; Cui, X. Y.; **ong, G. P.; Chen, L. A computational investigation of thermal effect on lithium dendrite growth. Energy Convers. Manag. 2018, 161, 193–204.

    Article  CAS  Google Scholar 

  51. Thenuwara, A. C.; Shetty, P. P.; McDowell, M. T. Distinct nanoscale interphases and morphology of lithium metal electrodes operating at low temperatures. Nano Lett. 2019, 19, 8664–8672.

    Article  CAS  Google Scholar 

  52. Yan, K.; Wang, J. Y.; Zhao, S. Q.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. X. Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2019, 58, 11364–11368.

    Article  CAS  Google Scholar 

  53. Li, L.; Basu, S.; Wang, Y. P.; Chen, Z. Z.; Hundekar, P.; Wang, B. W.; Shi, J. F.; Shi, Y.; Narayanan, S.; Koratkar, N. Self-heating-induced healing of lithium dendrites. Science 2018, 359, 1513–1516.

    Article  CAS  Google Scholar 

  54. **ao, J. How lithium dendrites form in liquid batteries. Science 2019, 366, 426–427.

    Article  CAS  Google Scholar 

  55. Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 1990, 42, 7355–7367.

    Article  CAS  Google Scholar 

  56. Brissot, C.; Rosso, M.; Chazalviel, J. N.; Baudry, P.; Lascaud, S. In situ study of dendritic growth inlithium/PEO-salt/lithium cells. Electrochim. Acta 1998, 43, 1569–1574.

    Article  CAS  Google Scholar 

  57. Rosso, M.; Gobron, T.; Brissot, C.; Chazalviel, J. N.; Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 2001, 97–98, 804–806.

    Article  Google Scholar 

  58. Bai, P.; Guo, J. Z.; Wang, M.; Kushima, A.; Su, L.; Li, J.; Brushett, F. R.; Bazant, M. Z. Interactions between lithium growths and nanoporous ceramic separators. Joule 2018, 2, 2434–2449.

    Article  CAS  Google Scholar 

  59. Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 2016, 9, 3221–3229.

    Article  CAS  Google Scholar 

  60. Chang, H. J.; Ilott, A. J.; Trease, N. M.; Mohammadi, M.; Jerschow, A.; Grey, C. P. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI. J. Am. Chem. Soc. 2015, 137, 15209–15216.

    Article  CAS  Google Scholar 

  61. Wang, Z. X.; Sun, Z. H.; Li, J.; Shi, Y.; Sun, C. G.; An, B. G.; Cheng, H. M.; Li, F. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem. Soc. Rev. 2021, 50, 3178–3210.

    Article  CAS  Google Scholar 

  62. Chen, X. R.; Yao, Y. X.; Yan, C.; Zhang, R.; Cheng, X. B.; Zhang, Q. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 7743–7747.

    Article  CAS  Google Scholar 

  63. Liu, Y. Y.; Xu, X. Y.; Kapitanova, O. O.; Evdokimov, P. V.; Song, Z. X.; Matic, A.; **ong, S. Z. Electro-chemo-mechanical modeling of artificial solid—electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 2022, 12, 2103589.

    Article  CAS  Google Scholar 

  64. Shen, X.; Zhang, R.; Chen, X.; Cheng, X. B.; Li, X. Y.; Zhang, Q. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength? Adv. Energy Mater. 2020, 10, 1903645.

    Article  CAS  Google Scholar 

  65. Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium, and lithium flotsams. Nano Energy 2017, 32, 271–279.

    Article  CAS  Google Scholar 

  66. Jiang, F. N.; Yang, S. J.; Liu, H.; Cheng, X. B.; Liu, L.; ** electrochemistry of Li metal anode. SusMat 2021, 1, 506–536.

    Article  CAS  Google Scholar 

  67. Chen, Q.; Geng, K.; Sieradzki, K. Prospects for dendrite-free cycling of Li metal batteries. J. Electrochem. Soc. 2015, 162, A2004–A2007.

    Article  CAS  Google Scholar 

  68. Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K. H.; Zhang, J. G.; Thornton, K.; Dasgupta, N. P. Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2016, 2, 790–801.

    Article  CAS  Google Scholar 

  69. Chen, X.-R.; Yan, C.; Ding, J.-F.; Peng, H.-J.; Zhang, Q. New insights into “dead lithium” during strip** in lithium metal batteries. J. Energy Chem. 2021, 62, 289–294.

    Article  CAS  Google Scholar 

  70. Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515.

    Article  CAS  Google Scholar 

  71. Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 2017, 5, 11671–11681.

    Article  CAS  Google Scholar 

  72. Shi, H. F.; Lv, W.; Zhang, C.; Wang, D. W.; Ling, G. W.; He, Y. B.; Kang, F. Y.; Yang, Q. H. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: Confining, trap**, blocking, and breaking up. Adv. Funct. Mater. 2018, 28, 1800508.

    Article  Google Scholar 

  73. **ao, Q. H. Q.; Yang, J. L.; Wang, X. D.; Deng, Y. R.; Han, P.; Yuan, N.; Zhang, L.; Feng, M.; Wang, C. A.; Liu, R. P. Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: Progress and perspective. Carbon Energy 2021, 3, 271–302.

    Article  CAS  Google Scholar 

  74. Huang, L.; Shen, S. H.; Zhong, Y.; Zhang, Y. Q.; Zhang, L. J.; Wang, X. L.; **a, X. H.; Tong, X. L.; Zhou, J. C.; Tu, J. P. Multifunctional hyphae carbon powering lithium-sulfur batteries. Adv. Mater. 2022, 34, 2107415.

    Article  CAS  Google Scholar 

  75. Han, S. C.; Song, M. S.; Lee, H.; Kim, H. S.; Ahn, H. J.; Lee, J. Y. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries. J. Electrochem. Soc. 2003, 150, A889.

    Article  CAS  Google Scholar 

  76. Zhao, Y.; Wu, W. L.; Li, J. X.; Xu, Z. C.; Guan, L. H. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.

    Article  CAS  Google Scholar 

  77. Chen, H. W.; Wang, C. H.; Dong, W. L.; Lu, W.; Du, Z. L.; Chen, L. W. Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance. Nano Lett. 2015, 15, 798–802.

    Article  CAS  Google Scholar 

  78. Shi, H. D.; Zhao, X. J.; Wu, Z. S.; Dong, Y. F.; Lu, P. F.; Chen, J.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium sulfur batteries. Nano Energy 2019, 60, 743–751.

    Article  CAS  Google Scholar 

  79. He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. ACS Nano. 2013, 7, 10920–10930.

    Article  CAS  Google Scholar 

  80. Li, Z.; Wu, H. B.; Lou, X. W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 3061–3070.

    Article  CAS  Google Scholar 

  81. Peng, H. J.; Zhang, Q. Designing host materials for sulfur cathodes: From physical confinement to surface chemistry. Angew. Chem., Int. Ed. 2015, 54, 11018–11020.

    Article  CAS  Google Scholar 

  82. Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk—shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

    Article  Google Scholar 

  83. Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; **a, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting Magnéli-phase TinO2n−1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5288–5294.

    Article  CAS  Google Scholar 

  84. Wang, C.; Su, K.; Wan, W.; Guo, H.; Zhou, H. H.; Chen, J.; Zhang, X. X.; Huang, Y. H. High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 5018–5023.

    Article  CAS  Google Scholar 

  85. Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827.

    Article  CAS  Google Scholar 

  86. Meini, S.; Elazari, R.; Rosenman, A.; Garsuch, A.; Aurbach, D. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems. J. Phys. Chem. Lett. 2014, 5, 915–918.

    Article  CAS  Google Scholar 

  87. Kim, K. R.; Lee, K. S.; Ahn, C. Y.; Yu, S. H.; Sung, Y. E. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator. Sci. Rep. 2016, 6, 32433.

    Article  CAS  Google Scholar 

  88. Tsao, Y.; Lee, M.; Miller, E. C.; Gao, G. P.; Park, J.; Chen, S. C.; Katsumata, T.; Tran, H.; Wang, L. W.; Toney, M. F. et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries. Joule 2019, 3, 872–884.

    Article  CAS  Google Scholar 

  89. Li, G.; Wang, X. L.; Seo, M. H.; Li, M.; Ma, L.; Yuan, Y. F.; Wu, T. P.; Yu, A. P.; Wang, S.; Lu, J. et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries. Nat. Commun. 2018, 9, 705.

    Article  Google Scholar 

  90. Gao, X.; Zheng, X. L.; Tsao, Y.; Zhang, P.; **ao, X.; Ye, Y. S.; Li, J.; Yang, Y. F.; Xu, R.; Bao, Z. N. et al. All-solid-state lithium-sulfur batteries enhanced by redox mediators. J. Am. Chem. Soc. 2021, 143, 18188–18195.

    Article  CAS  Google Scholar 

  91. Zhao, M.; Peng, H. J.; Wei, J. Y.; Huang, J. Q.; Li, B. Q.; Yuan, H.; Zhang, Q. Dictating high-capacity lithium-sulfur batteries through redox-mediated lithium sulfide growth. Small Methods 2020, 4, 1900344.

    Article  CAS  Google Scholar 

  92. Peng, Y. Q.; Zhao, M.; Chen, Z. X.; Cheng, Q.; Liu, Y. R.; Li, X. Y.; Song, Y. W.; Li, B. Q.; Huang, J. Q. Boosting sulfur redox kinetics by a pentacenetetrone redox mediator for high-energy-density lithium-sulfur batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-4584-z.

  93. Liang, X.; Kwok, C. Y.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C. J.; Houtarde, D.; Kaup, K.; Sommer, H. et al. Tuning transition metal oxide—sulfur interactions for long life lithium sulfur batteries: The “Goldilocks” principle. Adv. Energy Mater. 2016, 6, 1501636.

    Article  Google Scholar 

  94. Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun. 2015, 6, 5682.

    Article  Google Scholar 

  95. Wang, S. Z.; Liao, J. X.; Yang, X. F.; Liang, J. N.; Sun, Q.; Liang, J. W.; Zhao, F. P.; Koo, A.; Kong, F. P.; Yao, Y. Y. et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy 2019, 57, 230–240.

    Article  CAS  Google Scholar 

  96. Kang, H. J.; Park, J. W.; Hwang, H. J.; Kim, H.; Jang, K. S.; Ji, X. L.; Kim, H. J.; Im, W. B.; Jun, Y. S. Electrocatalytic and stoichiometric reactivity of 2D layered siloxene for high-energy-dense lithium-sulfur batteries. Carbon Energy 2021, 3, 976–990.

    Article  CAS  Google Scholar 

  97. Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537.

    Article  CAS  Google Scholar 

  98. **n, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

    Article  CAS  Google Scholar 

  99. Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; **n, Y.; Zhang, Z. L.; Huang, Y. H. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 2014, 4, 1301473.

    Article  Google Scholar 

  100. Gao, J.; Sun, C. S.; Xu, L.; Chen, J.; Wang, C.; Guo, D. C.; Chen, H. Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode. J. Power Sources 2018, 382, 179–189.

    Article  CAS  Google Scholar 

  101. Wu, H. B.; Wei, S. Y.; Zhang, L.; Xu, R.; Hng, H. H.; Lou, X. W. D. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chem. -Eur. J. 2013, 19, 10804–10808.

    Article  CAS  Google Scholar 

  102. Zhu, Q. Z.; Zhao, Q.; An, Y. B.; Anasori, B.; Wang, H. R.; Xu, B. Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery. Nano Energy 2017, 33, 402–409.

    Article  CAS  Google Scholar 

  103. Zheng, S. Y.; Wen, Y.; Zhu, Y. J.; Han, Z.; Wang, J. H.; Yang, J.; Wang, C. S. In situ sulfur reduction and intercalation of graphite oxides for Li-S battery cathodes. Adv. Energy Mater. 2014, 4, 1400482.

    Article  Google Scholar 

  104. Markevich, E.; Salitra, G.; Rosenman, A.; Talyosef, Y.; Chesneau, F.; Aurbach, D. The effect of a solid—electrolyte interphase on the mechanism of operation of lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 19873–19883.

    Article  CAS  Google Scholar 

  105. Wu, X. J.; Zhang, Q.; Tang, G.; Cao, Y. L.; Yang, H. X.; Li, H.; Ai, X. P. A solid-phase conversion sulfur cathode with full capacity utilization and superior cycle stability for lithium-sulfur batteries. Small 2022, 18, 2106144.

    Article  CAS  Google Scholar 

  106. Li, X.; Banis, M.; Lushington, A.; Yang, X. F.; Sun, Q.; Zhao, Y.; Liu, C. Q.; Li, Q. Z.; Wang, B. Q.; **ao, W. et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nat. Commun. 2018, 9, 4509.

    Article  Google Scholar 

  107. Chen, X.; Ji, H. J.; Rao, Z. X.; Yuan, L.; Shen, Y.; Xu, H. H.; Li, Z.; Huang, Y. H. Insight into the fading mechanism of the solid-conversion sulfur cathodes and designing long cycle lithium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2102774.

    Article  CAS  Google Scholar 

  108. He, F.; Wu, X. J.; Qian, J. F.; Cao, Y. L.; Yang, H. X.; Ai, X. P.; **a, D. G. Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. J. Mater. Chem. A 2018, 6, 23396–23407.

    Article  CAS  Google Scholar 

  109. He, M. X.; Li, X.; Yang, X. F.; Wang, C. H.; Zheng, M. L.; Li, R. Y.; Zuo, P. J.; Yin, G. P.; Sun, X. L. Realizing solid-phase reaction in Li-S batteries via localized high-concentration carbonate electrolyte. Adv. Energy Mater. 2021, 11, 2101004.

    Article  CAS  Google Scholar 

  110. Ng, S. F.; Lau, M. Y. L.; Ong, W. J. Lithium-sulfur battery cathode design: Tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion. Adv. Mater. 2021, 33, 2008654.

    Article  CAS  Google Scholar 

  111. Hu, A. J.; Zhou, M. J.; Lei, T. Y.; Hu, Y.; Du, X. C.; Gong, C. H.; Shu, C. Z.; Long, J. P.; Zhu, J.; Chen, W. et al. Optimizing redox reactions in aprotic lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2002180.

    Article  CAS  Google Scholar 

  112. Dai, Y. Y.; Xu, C. M.; Liu, X. H.; He, X. X.; Yang, Z.; Lai, W. H.; Li, L.; Qiao, Y.; Chou, S. L. Manipulating metal—sulfur interactions for achieving high-performance S cathodes for room temperature Li/Na-sulfur batteries. Carbon Energy 2021, 3, 253–270.

    Article  CAS  Google Scholar 

  113. Al Salem, H.; Babu, G.; Rao, C. V.; Arava, L. M. R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J. Am. Chem. Soc. 2015, 137, 11542–11545.

    Article  CAS  Google Scholar 

  114. Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 2016, 9, 1998–2004.

    Article  CAS  Google Scholar 

  115. Wang, C. H.; Li, Y. H.; Cao, F.; Zhang, Y. Q.; **a, X. H.; Zhang, L. J. Employing Ni-embedded porous graphitic carbon fibers for high-efficiency lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2022, 14, 10457–10466.

    Article  CAS  Google Scholar 

  116. Wang, Z. Y.; Zhang, B. H.; Liu, S.; Li, G. R.; Yan, T. Y.; Gao, X. P. Nickel-platinum alloy nanocrystallites with high-index facets as highly effective core catalyst for lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200893.

    Article  CAS  Google Scholar 

  117. Wang, Z. Y.; Ge, H. L.; Liu, S.; Li, G. R.; Gao, X. P. High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12358.

  118. Tian, L. Y.; Zhang, Z.; Liu, S.; Li, G. R.; Gao, X. P. High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium-sulfur batteries. Energy Environ. Mater. 2022, 5, 645–654.

    Article  CAS  Google Scholar 

  119. Xu, H. F.; Hu, R. M.; Zhang, Y. Z.; Yan, H. B.; Zhu, Q.; Shang, J. X.; Yang, S. B.; Li, B. Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 2021, 43, 212–220.

    Article  CAS  Google Scholar 

  120. Lu, Y.; Qin, J. L.; Shen, T.; Yu, Y. F.; Chen, K.; Hu, Y. Z.; Liang, J. N.; Gong, M. X.; Zhang, J. J.; Wang, D. L. Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li-S batteries. Adv. Energy Mater. 2021, 2101780.

  121. Yuan, H. F.; Zhang, N.; Tian, L. W.; Xu, L.; Shao, Q. J.; Zaidi, S. D. A.; **ao, J. P.; Chen, J. Incorporation of layered tin(IV) phosphate in graphene framework for high performance lithium-sulfur batteries. J. Energy Chem. 2021, 53, 99–108.

    Article  CAS  Google Scholar 

  122. Hua, W. X.; Li, H.; Pei, C.; **a, J. Y.; Sun, Y. F.; Zhang, C.; Lv, W.; Tao, Y.; Jiao, Y.; Zhang, B. S. et al. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2101006.

    Article  CAS  Google Scholar 

  123. Wang, L.; Hua, W. X.; Wan, X.; Feng, Z.; Hu, Z. H.; Li, H.; Niu, J. T.; Wang, L. X.; Wang, A. S.; Liu, J. Y. et al. Design rules of a sulfur redox electrocatalyst for lithium-sulfur batteries. Adv. Mater. 2022, 34, 2110279.

    Article  CAS  Google Scholar 

  124. Wang, L.; Hu, Z. H.; Wan, X.; Hua, W. X.; Li, H.; Yang, Q. H.; Wang, W. C. Li2S4 anchoring governs the catalytic sulfur reduction on defective SmMn2O5 in lithium-sulfur battery. Adv. Energy Mater. 2022, 12, 2200340.

    Article  CAS  Google Scholar 

  125. Yan, B.; Li, X. F.; **ao, W.; Hu, J. H.; Zhang, L. L.; Yang, X. L. Design, synthesis, and application of metal sulfides for Li-S batteries: Progress and prospects. J. Mater. Chem. A 2020, 8, 17848–17882.

    Article  CAS  Google Scholar 

  126. Zhang, Q. F.; Wang, Y. P.; Seh, Z. W.; Fu, Z. H.; Zhang, R. F.; Cui, Y. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 2015, 15, 3780–3786.

    Article  CAS  Google Scholar 

  127. Wang, H. T.; Zhang, Q. F.; Yao, H. B.; Liang, Z.; Lee, H. W.; Hsu, P. C.; Zheng, G. Y.; Cui, Y. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett. 2014, 14, 7138–7144.

    Article  CAS  Google Scholar 

  128. Babu, G.; Masurkar, N.; Al Salem, H.; Arava, L. M. R. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. J. Am. Chem. Soc. 2017, 139, 171–178.

    Article  CAS  Google Scholar 

  129. Lin, H. B.; Yang, L. Q.; Jiang, X.; Li, G. C.; Zhang, T. R.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1476–1486.

    Article  CAS  Google Scholar 

  130. Shao, Q. J.; Lu, P. F.; Xu, L.; Guo, D. C.; Gao, J.; Wu, Z. S.; Chen, J. Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li-S batteries. J. Energy Chem. 2020, 51, 262–271.

    Article  Google Scholar 

  131. Liu, B.; Zhang, Y.; Wang, Z. L.; Ai, C. Z.; Liu, S. F.; Liu, P.; Zhong, Y.; Lin, S. W.; Deng, S. J.; Liu, Q. et al. Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries. Adv. Mater. 2020, 32, 2003657.

    Article  CAS  Google Scholar 

  132. Chen, X.; Peng, H. J.; Zhang, R.; Hou, T. Z.; Huang, J. Q.; Li, B.; Zhang, Q. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett. 2017, 2, 795–801.

    Article  CAS  Google Scholar 

  133. Shen, Z. H.; **, X.; Tian, J. M.; Li, M.; Yuan, Y. F.; Zhang, S.; Fang, S. S.; Fan, X.; Xu, W. G.; Lu, H. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries. Nat. Catal. 2022, 5, 555–563.

    Article  CAS  Google Scholar 

  134. Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

    Article  Google Scholar 

  135. Wang, Y. K.; Zhang, R. F.; Pang, Y. C.; Chen, X.; Lang, J. X.; Xu, J. J.; **ao, C. H.; Li, H. L.; **, K.; Ding, S. J. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 2019, 16, 228–235.

    Article  Google Scholar 

  136. **ao, K. K.; Wang, J.; Chen, Z.; Qian, Y. H.; Liu, Z.; Zhang, L. L.; Chen, X. H.; Liu, J. L.; Fan, X. F.; Shen, Z. X. Improving polysulfides adsorption and redox kinetics by the Co4N nanoparticle/N-doped carbon composites for lithium-sulfur batteries. Small 2019, 15, 1901454.

    Article  Google Scholar 

  137. Li, R. R.; Peng, H. J.; Wu, Q. P.; Zhou, X. J.; He, J.; Shen, H. J.; Yang, M. H.; Li, C. L. Sandwich-like catalyst-carbon-catalyst trilayer structure as a compact 2D host for highly stable lithium-sulfur batteries. Angew. Chem., Int. Ed. 2020, 59, 12129–12138.

    Article  CAS  Google Scholar 

  138. Zhao, M.; Peng, H. J.; Zhang, Z. W.; Li, B. Q.; Chen, X.; **e, J.; Chen, X.; Wei, J. Y.; Zhang, Q.; Huang, J. Q. Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal. Angew. Chem., Int. Ed. 2019, 58, 3779–3783.

    Article  CAS  Google Scholar 

  139. Shen, Z. H.; Zhang, Z. L.; Li, M.; Yuan, Y. F.; Zhao, Y.; Zhang, S.; Zhong, C. L.; Zhu, J.; Lu, J.; Zhang, H. G. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 2020, 14, 6673–6682.

    Article  CAS  Google Scholar 

  140. Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

    Article  CAS  Google Scholar 

  141. Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

    Article  Google Scholar 

  142. **ao, Z. B.; Li, Z. L.; Meng, X. P.; Wang, R. H. MXene-engineered lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 22730–22743.

    Article  CAS  Google Scholar 

  143. **ao, Z. B.; Li, Z. L.; Li, P. Y.; Meng, X. P.; Wang, R. H. Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries. ACS Nano 2019, 13, 3608–3617.

    Article  CAS  Google Scholar 

  144. Song, Y. Z.; Sun, Z. T.; Fan, Z. D.; Cai, W. L.; Shao, Y. L.; Sheng, G.; Wang, M. L.; Song, L. X.; Liu, Z. F.; Zhang, Q. et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy 2020, 70, 104555.

    Article  CAS  Google Scholar 

  145. Zhang, Y. G.; Li, G. R.; Wang, J. Y.; Cui, G. L.; Wei, X. L.; Shui, L. L.; Kempa, K.; Zhou, G. F.; Wang, X.; Chen, Z. W. Hierarchical defective Fe3−xC@C hollow microsphere enables fast and long-lasting lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2001165.

    Article  CAS  Google Scholar 

  146. Guo, Y. C.; Khatoon, R.; Lu, J. G.; He, Q. G.; Gao, X.; Yang, X. P.; Hu, X.; Wu, Y.; Lian, J. L.; Li, Z. P. et al. Regulating adsorption ability toward polysulfides in a porous carbon/Cu3P hybrid for an ultrastable high-temperature lithium-sulfur battery. Carbon Energy 2021, 3, 841–855.

    Article  CAS  Google Scholar 

  147. Zhou, J. B.; Liu, X. J.; Zhu, L. Q.; Zhou, J.; Guan, Y.; Chen, L.; Niu, S. W.; Cai, J. Y.; Sun, D.; Zhu, Y. C. et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry. Joule 2018, 2, 2681–2693.

    Article  CAS  Google Scholar 

  148. Shen, Z. H.; Cao, M. Q.; Zhang, Z. L.; Pu, J.; Zhong, C. L.; Li, J. C.; Ma, H. X.; Li, F. J.; Zhu, J.; Pan, F. et al. Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium-sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 2020, 30, 1906661.

    Article  CAS  Google Scholar 

  149. Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2—TiN heterostructures enabling smooth trap**-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

    Article  CAS  Google Scholar 

  150. Qin, B.; Cai, Y. F.; Wang, P. C.; Zou, Y. C.; Cao, J.; Qi, J. L. Crystalline molybdenum carbide—amorphous molybdenum oxide heterostructures: In situ surface reconfiguration and electronic states modulation for Li-S batteries. Energy Storage Mater. 2022, 47, 345–353.

    Article  Google Scholar 

  151. Yao, Y.; Wang, H. Y.; Yang, H.; Zeng, S. F.; Xu, R.; Liu, F. F.; Shi, P. C.; Feng, Y. Z.; Wang, K.; Yang, W. J. et al. A dual-functional conductive framework embedded with TiN—VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 2020, 32, 1905658.

    Article  CAS  Google Scholar 

  152. Liang, Z. W.; Shen, J. D.; Xu, X. J.; Li, F. K.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv. Mater. 2022, 34, 2200102.

    Article  CAS  Google Scholar 

  153. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  154. Wang, F. F.; Li, J.; Zhao, J.; Yang, Y. X.; Su, C. L.; Zhong, Y. L.; Yang, Q. H.; Lu, J. Single-atom electrocatalysts for lithium sulfur batteries: Progress, opportunities, and challenges. ACS Mater. Lett. 2020, 2, 1450–1463.

    Article  CAS  Google Scholar 

  155. Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C.; **e, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

    Article  CAS  Google Scholar 

  156. Wang, C. G.; Song, H. W.; Yu, C. C.; Ullah, Z.; Guan, Z. X.; Chu, R. R.; Zhang, Y. F.; Zhao, L. Y.; Li, Q.; Liu, L. W. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 3421–3430.

    Article  CAS  Google Scholar 

  157. Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; **e, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903955.

    Article  CAS  Google Scholar 

  158. Shi, H. D.; Ren, X. M.; Lu, J. M.; Dong, C.; Liu, J.; Yang, Q. H.; Chen, J.; Wu, Z. S. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 2020, 10, 2002271.

    Article  CAS  Google Scholar 

  159. Zhang, D.; Wang, S.; Hu, R. M.; Gu, J. N.; Cui, Y. L. S.; Li, B.; Chen, W. H.; Liu, C. T.; Shang, J. X.; Yang, S. B. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471.

    Article  CAS  Google Scholar 

  160. Yi, Z. L.; Su, F. Y.; Dai, L. Q.; Wang, Z. B.; **e, L. J.; Zuo, Z.; Chen, X.; Liu, Y. D.; Chen, C. M. Uncovering electrocatalytic conversion mechanisms from Li2S2 to Li2S: Generalization of computational hydrogen electrode. Energy Storage Mater. 2022, 47, 327–335.

    Article  Google Scholar 

  161. Shao, Q. J.; Xu, L.; Guo, D. C.; Su, Y.; Chen, J. Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 23772–23783.

    Article  CAS  Google Scholar 

  162. Peng, M.; Dong, C. Y.; Gao, R.; **ao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2021, 7, 262–273.

    Article  CAS  Google Scholar 

  163. Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020, 20, 1252–1261.

    Article  CAS  Google Scholar 

  164. Zeng, Z. H.; Nong, W.; Li, Y.; Wang, C. X. Universal-descriptors-guided design of single atom catalysts toward oxidation of Li2S in lithium-sulfur batteries. Adv. Sci. 2021, 8, 2102809.

    Article  CAS  Google Scholar 

  165. Han, Z. Y.; Zhao, S. Y.; **ao, J. W.; Zhong, X. W.; Sheng, J. Z.; Lv, W.; Zhang, Q. F.; Zhou, G. M.; Cheng, H. M. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv. Mater. 2021, 33, 2105947.

    Article  CAS  Google Scholar 

  166. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  167. Qiu, Y.; Fan, L. S.; Wang, M. X.; Yin, X. J.; Wu, X.; Sun, X.; Tian, D.; Guan, B.; Tang, D. Y.; Zhang, N. Q. Precise synthesis of Fe-N2 sites with high activity and stability for long-life lithium-sulfur batteries. ACS Nano 2020, 14, 16105–16113.

    Article  CAS  Google Scholar 

  168. Ma, C.; Zhang, Y. Q.; Feng, Y. M.; Wang, N.; Zhou, L. J.; Liang, C. P.; Chen, L. B.; Lai, Y. Q.; Ji, X. B.; Yan, C. L. et al. Engineering Fe—N coordination structures for fast redox conversion in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2100171.

    Article  CAS  Google Scholar 

  169. Wang, J. Y.; Qiu, W. B.; Li, G. R.; Liu, J. B.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Wang, X. et al. Coordinatively deficient single-atom Fe—N—C electrocatalyst with optimized electronic structure for high-performance lithium-sulfur batteries. Energy Storage Mater. 2022, 46, 269–277.

    Article  CAS  Google Scholar 

  170. Liu, Y. N.; Wei, Z. Y.; Zhong, B.; Wang, H. T.; **a, L.; Zhang, T.; Duan, X. M.; Jia, D. C.; Zhou, Y.; Huang, X. X. O-, N-Coordinated single Mn atoms accelerating polysulfides transformation in lithium-sulfur batteries. Energy Storage Mater. 2021, 35, 12–18.

    Article  Google Scholar 

  171. Zhang, S. J.; Shao, Q. J.; Su, Y.; Xu, L.; Jiang, Q. K.; Chen, J. Atomically dispersed Co anchored on N, S-riched carbon as efficient electrocatalysts for advanced Li-S batteries. J. Alloys Compd. 2022, 910, 164799.

    Article  CAS  Google Scholar 

  172. Li, Y. B.; Sun, Y. M.; Pei, A.; Chen, K. F.; Vailionis, A.; Li, Y. Z.; Zheng, G. Y.; Sun, J.; Cui, Y. Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Cent. Sci. 2018, 4, 97–104.

    Article  CAS  Google Scholar 

  173. Chen, H.; Pei, A.; Lin, D. C.; **e, J.; Yang, A. K.; Xu, J. W.; Lin, K. X.; Wang, J. Y.; Wang, H. S.; Shi, F. F. et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv. Energy Mater. 2019, 9, 1900858.

    Article  Google Scholar 

  174. Zhao, J.; Liao, L.; Shi, F. F.; Lei, T.; Chen, G. X.; Pei, A.; Sun, J.; Yan, K.; Zhou, G. M.; **e, J. et al. Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 2017, 139, 11550–11558.

    Article  CAS  Google Scholar 

  175. Lin, D. C.; Liu, Y. Y.; Chen, W.; Zhou, G. M.; Liu, K.; Dunn, B.; Cui, Y. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 2017, 17, 3731–3737.

    Article  CAS  Google Scholar 

  176. Zhang, X. Q.; Chen, X.; Xu, R.; Cheng, X. B.; Peng, H. J.; Zhang, R.; Huang, J. Q.; Zhang, Q. Columnar lithium metal anodes. Angew. Chem., Int. Ed. 2017, 129, 14395–14399.

    Article  Google Scholar 

  177. Zhao, K. X.; **, Q.; Zhang, L. Y.; Li, L.; Wu, L. L.; Zhang, X. T. Achieving dendrite-free lithium deposition on the anode of lithium-sulfur battery by LiF-rich regulation layer. Electrochim. Acta 2021, 393, 138981.

    Article  CAS  Google Scholar 

  178. Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X. Q.; Nazar, L. F. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2017, 2, 17119.

    Article  CAS  Google Scholar 

  179. Guo, W.; Han, Q.; Jiao, J. R.; Wu, W. H.; Zhu, X. B.; Chen, Z. H.; Zhao, Y. In situ construction of robust biphasic surface layers on lithium metal for lithium-sulfide batteries with long cycle Life. Angew. Chem., Int. Ed. 2021, 60, 7267–7274.

    Article  CAS  Google Scholar 

  180. Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.

    Article  CAS  Google Scholar 

  181. Li, Q.; Zeng, F. L.; Guan, Y. P.; **, Z. Q.; Huang, Y. Q.; Yao, M.; Wang, W. K.; Wang, A. B. Poly(dimethylsiloxane) modified lithium anode for enhanced performance of lithium-sulfur batteries. Energy Storage Mater. 2018, 13, 151–159.

    Article  Google Scholar 

  182. Zhao, P. Y.; Feng, Y. Y.; Li, T. T.; Li, B.; Hu, L. L.; Sun, K.; Bao, C. G.; **ong, S. Z.; Matic, A.; Song, J. X. Stable lithium metal anode enabled by high-dimensional lithium deposition through a functional organic substrate. Energy Storage Mater. 2020, 33, 158–163.

    Article  Google Scholar 

  183. Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; **e, J.; Dauskardt, R. H.; Cui, Y. An artificial solid—electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2017, 29, 1605531.

    Article  Google Scholar 

  184. Peng, Z.; Zhao, N.; Zhang, Z. G.; Wan, H.; Lin, H.; Liu, M.; Shen, C.; He, H. Y.; Guo, X. X.; Zhang, J. G. et al. Stabilizing Li—electrolyte interface with a transplantable protective layer based on nanoscale LiF domains. Nano Energy 2017, 39, 662–672.

    Article  CAS  Google Scholar 

  185. Xu, R.; **ao, Y.; Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Zhang, X. Q.; Yan, C.; Zhang, Q.; Huang, J. Q. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv. Mater. 2019, 31, 1808392.

    Article  Google Scholar 

  186. Wang, H. J.; Wu, L. L.; Xue, B.; Wang, F.; Luo, Z. K.; Zhang, X. H.; Calvez, L.; Fan, P.; Fan, B. Improving cycling stability of the lithium anode by a spin-coated high-purity Li3PS4 artificial SEI layer. ACS Appl. Mater. Interfaces 2022, 14, 15214–15224.

    Article  CAS  Google Scholar 

  187. Zheng, G. Y.; Wang, C.; Pei, A.; Lopez, J.; Shi, F. F.; Chen, Z.; Sendek, A. D.; Lee, H. W.; Lu, Z. D.; Schneider, H. et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 2016, 1, 1247–1255.

    Article  CAS  Google Scholar 

  188. Cui, C.; Zhang, R. P.; Fu, C. K.; **e, B. X.; Du, C. Y.; Wang, J. J.; Gao, Y. Z.; Yin, G. P.; Zuo, P. J. Stabilizing lithium metal anode enabled by a natural polymer layer for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 28252–28260.

    Article  CAS  Google Scholar 

  189. Jiang, S.; Lu, Y.; Lu, Y. Y.; Han, M.; Li, H. X.; Tao, Z. L.; Niu, Z. Q.; Chen, J. Nafion/titanium dioxide-coated lithium anode for stable lithium-sulfur batteries. Chem. Asian J. 2018, 13, 1379–1385.

    Article  CAS  Google Scholar 

  190. Luo, J.; Lee, R. C.; **, J. T.; Weng, Y. T.; Fang, C. C.; Wu, N. L. A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li-S batteries. Chem. Commun. 2017, 53, 963–966.

    Article  CAS  Google Scholar 

  191. Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 2018, 140, 11735–11744.

    Article  CAS  Google Scholar 

  192. Luo, J.; Fang, C. C.; Wu, N. L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701482.

    Article  Google Scholar 

  193. Tamwattana, O.; Park, H.; Kim, J.; Hwang, I.; Yoon, G.; Hwang, T. H.; Kang, Y. S.; Park, J.; Meethong, N.; Kang, K. High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 2021, 6, 4416–4425.

    Article  CAS  Google Scholar 

  194. Kozen, A. C.; Lin, C. F.; Pearse, A. J.; Schroeder, M. A.; Han, X. G.; Hu, L. B.; Lee, S. B.; Rubloff, G. W.; Noked, M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015, 9, 5884–5892.

    Article  CAS  Google Scholar 

  195. Wang, W. W.; Yue, X. Y.; Meng, J. K.; Wang, J. Y.; Wang, X. X.; Chen, H.; Shi, D. R.; Fu, J.; Zhou, Y. N.; Chen, J. et al. Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater. 2019, 18, 414–422.

    Article  Google Scholar 

  196. Wang, L. P.; Wang, Q. J.; Jia, W. S.; Chen, S. L.; Gao, P.; Li, J. Z. Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. J. Power Sources 2017, 342, 175–182.

    Article  CAS  Google Scholar 

  197. Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat. Nanotechnol. 2018, 13, 337–344.

    Article  CAS  Google Scholar 

  198. Liu, F.; **ao, Q. F.; Wu, H. B.; Shen, L.; Xu, D.; Cai, M.; Lu, Y. F. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701744.

    Article  Google Scholar 

  199. Chen, L.; Huang, Z. N.; Shahbazian-Yassar, R.; Libera, J. A.; Klavetter, K. C.; Zavadil, K. R.; Elam, J. W. Directly formed alucone on lithium metal for high-performance Li batteries and Li-S batteries with high sulfur mass loading. ACS Appl. Mater. Interfaces 2018, 10, 7043–7051.

    Article  CAS  Google Scholar 

  200. Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.; Affinito, J. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J. Electrochem. Soc. 2009, 156, A694–A702.

    Article  CAS  Google Scholar 

  201. **ong, S. Z.; **e, K.; Diao, Y.; Hong, X. B. On the role of polysulfides for a stable solid—electrolyte interphase on the lithium anode cycled in lithium-sulfur batteries. J. Power Sources 2013, 236, 181–187.

    Article  CAS  Google Scholar 

  202. **ong, S. Z.; **e, K.; Diao, Y.; Hong, X. B. Characterization of the solid—electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries. J. Power Sources 2014, 246, 840–845.

    Article  CAS  Google Scholar 

  203. Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

    Article  Google Scholar 

  204. Yan, C.; Cheng, X. B.; Zhao, C. Z.; Huang, J. Q.; Yang, S. T.; Zhang, Q. Lithium metal protection through in situ formed solid—electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode. J. Power Sources 2016, 327, 212–220.

    Article  CAS  Google Scholar 

  205. Cheng, X. B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. Q.; Peng, H. J.; Zhang, R.; Yang, S. T.; Zhang, Q. Implantable solid—electrolyte interphase in lithium-metal batteries. Chem 2017, 2, 258–270.

    Article  CAS  Google Scholar 

  206. Zu, C. X.; Manthiram, A. Stabilized lithium-metal surface in a polysulfide-rich environment of lithium-sulfur batteries. J. Phys. Chem. Lett. 2014, 5, 2522–2527.

    Article  CAS  Google Scholar 

  207. Yang, Y. B.; Liu, Y. X.; Song, Z. P.; Zhou, Y. H.; Zhan, H. Li+-permeable film on lithium anode for lithium sulfur battery. ACS Appl. Mater. Interfaces 2017, 9, 38950–38958.

    Article  CAS  Google Scholar 

  208. Ren, Y. X.; Zhao, T. S.; Liu, M.; Zeng, Y. K.; Jiang, H. R. A self-cleaning Li-S battery enabled by a bifunctional redox mediator. J. Power Sources. 2017, 361, 203–210.

    Article  CAS  Google Scholar 

  209. Wu, F. X.; Thieme, S.; Ramanujapuram, A.; Zhao, E. B.; Weller, C.; Althues, H.; Kaskel, S.; Borodin, O.; Yushin, G. Toward in situ protected sulfur cathodes by using lithium bromide and pre-charge. Nano Energy 2017, 40, 170–179.

    Article  CAS  Google Scholar 

  210. Wu, F. X.; Lee, J. T.; Nitta, N.; Kim, H.; Borodin, O.; Yushin, G. Lithium iodide as a promising electrolyte additive for lithium-sulfur batteries: Mechanisms of performance enhancement. Adv. Mater. 2015, 27, 101–108.

    Article  CAS  Google Scholar 

  211. Yang, W.; Yang, W.; Song, A. L.; Gao, L. J.; Sun, G.; Shao, G. J. Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. J. Power Sources 2017, 348, 175–182.

    Article  CAS  Google Scholar 

  212. Wu, H. L.; Shin, M.; Liu, Y. M.; See, K. A.; Gewirth, A. A. Thiol-based electrolyte additives for high-performance lithium-sulfur batteries. Nano Energy 2017, 32, 50–58.

    Article  CAS  Google Scholar 

  213. Guo, W.; Zhang, W. Y.; Si, Y. B.; Wang, D. H.; Fu, Y. Z.; Manthiram, A. Artificial dual solid—electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nat. Commun. 2021, 12, 3031.

    Article  CAS  Google Scholar 

  214. Phadke, S.; Coadou, E.; Anouti, M. Catholyte formulations for high-energy Li-S batteries. J. Phys. Chem. Lett. 2017, 8, 5907–5914.

    Article  CAS  Google Scholar 

  215. Matsuda, S.; Kubo, Y.; Uosaki, K.; Nakanishi, S. Insulative microfiber 3D matrix as a host material minimizing volume change of the anode of Li metal batteries. ACS Energy Lett. 2017, 2, 924–929.

    Article  CAS  Google Scholar 

  216. Li, N.; Wei, W. F.; **e, K. Y.; Tan, J. W.; Zhang, L.; Luo, X. D.; Yuan, K.; Song, Q.; Li, H. J.; Shen, C. et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries. Nano Lett. 2018, 18, 2067–2073.

    Article  CAS  Google Scholar 

  217. Wang, G.; **ong, X. H.; Lin, Z. H.; Zheng, J.; Zheng, F. H.; Li, Y. P.; Liu, Y. Z.; Yang, C. H.; Tang, Y. W.; Liu, M. L. Uniform Li deposition regulated via three-dimensional polyvinyl alcohol nanofiber networks for effective Li metal anodes. Nanoscale 2018, 10, 10018–10024.

    Article  CAS  Google Scholar 

  218. Fan, L.; Zhuang, H. L.; Zhang, W. D.; Fu, Y.; Liao, Z. H.; Lu, Y. Y. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode. Adv. Energy Mater. 2018, 8, 1703360.

    Article  Google Scholar 

  219. Li, G. X.; Liu, Z.; Huang, Q. Q.; Gao, Y.; Regula, M.; Wang, D. W.; Chen, L. Q.; Wang, D. H. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 2018, 3, 1076–1083.

    Article  CAS  Google Scholar 

  220. Zhang, W. D.; Zhuang, H. L.; Fan, L.; Gao, L. N.; Lu, Y. Y. A “cation—anion regulation” synergistic anode host for dendrite-free lithium metal batteries. Sci. Adv. 2018, 4, eaar4410.

    Article  Google Scholar 

  221. Yan, K.; Sun, B.; Munroe, P.; Wang, G. X. Three-dimensional pielike current collectors for dendrite-free lithium metal anodes. Energy Storage Mater. 2018, 11, 127–133.

    Article  Google Scholar 

  222. Jang, T.; Kang, J. H.; Kim, S.; Shim, M.; Lee, J.; Song, J.; Kim, W.; Ryu, K.; Byon, H. R. Nanometer-scale surface roughness of a 3D Cu substrate promoting Li nucleation in Li-metal batteries. ACS Appl. Energy Mater. 2021, 4, 2644–2651.

    Article  CAS  Google Scholar 

  223. Gu, Y.; Xu, H. Y.; Zhang, X. G.; Wang, W. W.; He, J. W.; Tang, S.; Yan, J. W.; Wu, D. Y.; Zheng, M. S.; Dong, Q. F. et al. Lithiophilic faceted Cu (100) surfaces: High utilization of host surface and cavities for lithium metal anodes. Angew. Chem., Int. Ed. 2019, 58, 3092–3096.

    Article  CAS  Google Scholar 

  224. Qian, J.; Wang, S.; Li, Y.; Zhang, M. L.; Wang, F. J.; Zhao, Y. Y.; Sun, Q.; Li, L.; Wu, F.; Chen, R. J. Lithium induced nano-sized copper with exposed lithiophilic surfaces to achieve dense lithium deposition for lithium metal anode. Adv. Funct. Mater. 2021, 31, 2006950.

    Article  CAS  Google Scholar 

  225. Yan, K.; Lu, Z. D.; Lee, H. W.; **ong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

    Article  CAS  Google Scholar 

  226. **, C. B.; Sheng, O. W.; Lu, Y.; Luo, J. M.; Yuan, H. D.; Zhang, W. K.; Huang, H.; Gan, Y. P.; **a, Y.; Liang, C. et al. Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA·cm−2. Nano Energy 2018, 45, 203–209.

    Article  CAS  Google Scholar 

  227. Yang, C. P.; Yao, Y. G.; He, S. M.; **e, H.; Hitz, E.; Hu, L. B. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 2017, 29, 1702714.

    Article  Google Scholar 

  228. Ely, D. R.; García, R. E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc. 2013, 160, A662–A668.

    Article  CAS  Google Scholar 

  229. Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; **e, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

    Article  CAS  Google Scholar 

  230. Wang, J. Y.; Wang, H. S.; **e, J.; Yang, A. K.; Pei, A.; Wu, C. L.; Shi, F. F.; Liu, Y. Y.; Lin, D. C.; Gong, Y. J. et al. Fundamental study on the wetting property of liquid lithium. Energy Storage Mater. 2018, 14, 345–350.

    Article  Google Scholar 

  231. Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

    Article  CAS  Google Scholar 

  232. Chen, X.; Chen, X. R.; Hou, T. Z.; Li, B. Q.; Cheng, X. B.; Zhang, R.; Zhang, Q. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. 2019, 5, eaau7728.

    Article  CAS  Google Scholar 

  233. Deng, W.; Zhu, W. H.; Zhou, X. F.; Peng, X. Q.; Liu, Z. P. Highly reversible Li plating confined in three-dimensional interconnected microchannels toward high-rate and stable metallic lithium anodes. ACS Appl. Mater. Interfaces 2018, 10, 20387–20395.

    Article  CAS  Google Scholar 

  234. Zhang, Y.; Wang, C. W.; Pastel, G.; Kuang, Y. D.; **e, H.; Li, Y. J.; Liu, B. Y.; Luo, W.; Chen, C. J.; Hu, L. B. 3D wettable framework for dendrite-free alkali metal anodes. Adv. Energy Mater. 2018, 8, 1800635.

    Article  Google Scholar 

  235. Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Zhang, Z. Q.; Wu, X. J.; Yang, X. Q.; Zhou, Y. N. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater. 2018, 14, 335–344.

    Article  Google Scholar 

  236. Fan, L.; Li, S. Y.; Liu, L.; Zhang, W. D.; Gao, L. N.; Fu, Y.; Chen, F.; Li, J.; Zhuang, H. L.; Lu, Y. Y. Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv. Energy Mater. 2018, 8, 1802350.

    Article  Google Scholar 

  237. Yu, B. Z.; Tao, T.; Mateti, S.; Lu, S. G.; Chen, Y. Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithium-metal batteries. Adv. Funct. Mater. 2018, 28, 1803023.

    Article  Google Scholar 

  238. Ma, Y.; **g, Y. X.; Gu, Y. T.; Qi, P. W.; Lian, Y. B.; Yang, C.; Abdul Razzaq, A.; Zhao, X. H.; Peng, Y.; Zeng, X. Q. et al. Redox-driven lithium perfusion to fabricate Li@Ni-foam composites for high lithium-loading 3D anodes. ACS Appl. Mater. Interfaces 2020, 12, 9355–9364.

    Article  CAS  Google Scholar 

  239. Yue, X. Y.; Bao, J.; Yang, S. Y.; Luo, R. J.; Wang, Q. C.; Wu, X. J.; Shadike, Z.; Yang, X. Q.; Zhou, Y. N. Petaloid-shaped ZnO coated carbon felt as a controllable host to construct hierarchical Li composite anode. Nano Energy 2020, 71, 104614.

    Article  CAS  Google Scholar 

  240. Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

    Article  CAS  Google Scholar 

  241. Liang, Z.; Lin, D. C.; Zhao, J.; Lu, Z. D.; Liu, Y. Y.; Liu, C.; Lu, Y. Y.; Wang, H. T.; Yan, K.; Tao, X. Y. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. USA 2016, 113, 2862–2867.

    Article  CAS  Google Scholar 

  242. Zhu, M. Q.; Li, B.; Li, S. M.; Du, Z. G.; Gong, Y. J.; Yang, S. B. Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks. Adv. Energy Mater. 2018, 8, 1703505.

    Article  Google Scholar 

  243. Niu, C. J.; Pan, H. L.; Xu, W.; **ao, J.; Zhang, J. G.; Luo, L. L.; Wang, C. M.; Mei, D. H.; Meng, J. S.; Wang, X. P. et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 2019, 14, 594–601.

    Article  CAS  Google Scholar 

  244. Li, K.; Hu, Z. Y.; Ma, J. Z.; Chen, S.; Mu, D. X.; Zhang, J. T. A 3D and stable lithium anode for high-performance lithium-iodine batteries. Adv. Mater. 2019, 31, 1902399.

    Article  Google Scholar 

  245. Zhu, S. D.; Chen, J. Recognizing the nitrogen/oxygen co-doped lithiophilicity chemistry toward molten Li infusion for fabricating composite Li metal anode. J. Alloys Compd. 2022, 903, 163553.

    Article  CAS  Google Scholar 

  246. Zhao, Q.; Hao, X. G.; Su, S. M.; Ma, J. B.; Hu, Y.; Liu, Y.; Kang, F. Y.; He, Y. B. Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. J. Mater. Chem. A 2019, 7, 15871–15879.

    Article  CAS  Google Scholar 

  247. Ye, Y. S.; Zhao, Y. Y.; Zhao, T.; Xu, S. N.; Xu, Z. X.; Qian, J.; Wang, L. L.; **ng, Y.; Wei, L.; Li, Y. J. et al. An antipulverization and high-continuity lithium metal anode for high-energy lithium batteries. Adv. Mater. 2021, 33, 2105029.

    Article  CAS  Google Scholar 

  248. Shi, P.; Li, T.; Zhang, R.; Shen, X.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Chen, X. R.; Liu, H.; Zhang, Q. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Adv. Mater. 2019, 31, 1807131.

    Article  Google Scholar 

  249. Wan, M. T.; Kang, S. J.; Wang, L.; Lee, H. W.; Zheng, G. W.; Cui, Y.; Sun, Y. M. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 2020, 11, 829.

    Article  CAS  Google Scholar 

  250. Cao, Z. J.; Li, B.; Yang, S. B. Dendrite-free lithium anodes with ultra-deep strip** and plating properties based on vertically oriented lithium-copper-lithium arrays. Adv. Mater. 2019, 31, 1901310.

    Article  Google Scholar 

  251. Shen, X.; Cheng, X. B.; Shi, P.; Huang, J. Q.; Zhang, X. Q.; Yan, C.; Li, T.; Zhang, Q. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries. J. Energy Chem. 2018, 37, 29–34.

    Article  Google Scholar 

  252. Ye, Y. F.; Song, M. K.; Xu, Y.; Nie, K. Q.; Liu, Y. S.; Feng, J.; Sun, X. H.; Cairns, E. J.; Zhang, Y. G.; Guo, J. H. Lithium nitrate: A double-edged sword in the rechargeable lithium-sulfur cell. Energy Storage Mater. 2019, 16, 498–504.

    Article  Google Scholar 

  253. Ding, N.; Zhou, L.; Zhou, C. W.; Geng, D. S.; Yang, J.; Chien, S. W.; Liu, Z. L.; Ng, M. F.; Yu, A. S.; Hor, T. S. A. et al. Building better lithium-sulfur batteries: From LiNO3 to solid oxide catalyst. Sci. Rep. 2016, 6, 33154.

    Article  CAS  Google Scholar 

  254. Zhang, S. S. A new finding on the role of LiNO3 in lithium-sulfur battery. J. Power Sources 2016, 322, 99–105.

    Article  CAS  Google Scholar 

  255. Shi, Z. P.; Wang, L.; Xu, H. F.; Wei, J. Q.; Yue, H. Y.; Dong, H. Y.; Yin, Y. H.; Yang, S. T. A soluble single atom catalyst promotes lithium polysulfide conversion in lithium sulfur batteries. Chem. Commun. (Camb.) 2019, 55, 12056–12059.

    Article  CAS  Google Scholar 

  256. Wang, Z. K.; Ji, H. Q.; Zhou, L. Z.; Shen, X. W.; Gao, L. H.; Liu, J.; Yang, T. Z.; Qian, T.; Yan, C. L. All-liquid-phase reaction mechanism enabling cryogenic Li-S batteries. ACS Nano 2021, 15, 13847–13856.

    Article  CAS  Google Scholar 

  257. Liu, T.; Li, H. J.; Yue, J. M.; Feng, J. N.; Mao, M. L.; Zhu, X. Z.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q. et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells. Angew. Chem., Int. Ed. 2021, 60, 17547–17555.

    Article  CAS  Google Scholar 

  258. Xu, R.; Li, J. C. M.; Lu, J.; Amine, K.; Belharouak, I. Demonstration of highly efficient lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 4170–4179.

    Article  CAS  Google Scholar 

  259. Cao, R. G.; Chen, J. Z.; Han, K. S.; Xu, W.; Mei, D. H.; Bhattacharya, P.; Engelhard, M. H.; Mueller, K. T.; Liu, J.; Zhang, J. G. Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 3059–3066.

    Article  CAS  Google Scholar 

  260. Lang, S. Y.; **ao, R. J.; Gu, L.; Guo, Y. G.; Wen, R.; Wan, L. J. Interfacial mechanism in lithium-sulfur batteries: How salts mediate the structure evolution and dynamics. J. Am. Chem. Soc. 2018, 140, 8147–8155.

    Article  CAS  Google Scholar 

  261. Zou, Q. L.; Lu, Y. C. Solvent-dictated lithium sulfur redox reactions: An operando UV—vis spectroscopic study. J. Phys. Chem. Lett. 2016, 7, 1518–1525.

    Article  CAS  Google Scholar 

  262. Cuisinier, M.; Hart, C.; Balasubramanian, M.; Garsuch, A.; Nazar, L. F. Radical or not radical: Revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy Mater. 2015, 5, 1401801.

    Article  Google Scholar 

  263. Vijayakumar, M.; Govind, N.; Walter, E.; Burton, S. D.; Shukla, A.; Devaraj, A.; **ao, J.; Liu, J.; Wang, C. M.; Karim, A. et al. Molecular structure and stability of dissolved lithium polysulfide species. Phys. Chem. Chem. Phys. 2014, 16, 10923–10932.

    Article  CAS  Google Scholar 

  264. Baek, M.; Shin, H.; Char, K.; Choi, J. W. New high donor electrolyte for lithium-sulfur batteries. Adv. Mater. 2020, 32, 2005022.

    Article  Google Scholar 

  265. Pan, H. L.; Chen, J. Z.; Cao, R. G.; Murugesan, V.; Rajput, N. N.; Han, K. S.; Persson, K.; Estevez, L.; Engelhard, M. H.; Zhang, J. G. et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth. Nat. Energy 2017, 2, 813–820.

    Article  CAS  Google Scholar 

  266. Chu, H.; Noh, H.; Kim, Y. J.; Yuk, S.; Lee, J. H.; Lee, J.; Kwack, H.; Kim, Y.; Yang, D. K.; Kim, H. T. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 2019, 10, 188.

    Article  Google Scholar 

  267. Yang, B.; Jiang, H. R.; Zhou, Y. C.; Liang, Z. J.; Zhao, T. S.; Lu, Y. C. Critical role of anion donicity in Li2S deposition and sulfur utilization in Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 25940–25948.

    Article  CAS  Google Scholar 

  268. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; **ao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

    Article  CAS  Google Scholar 

  269. Jia, W. S.; Fan, C.; Wang, L. P.; Wang, Q. J.; Zhao, M. J.; Zhou, A. J.; Li, J. Z. Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery. ACS Appl. Mater. Interfaces 2016, 8, 15399–15405.

    Article  CAS  Google Scholar 

  270. Shuai, Y.; Zhang, Z. P.; Chen, K. H.; Lou, J.; Wang, Y. Highly stable lithium plating by a multifunctional electrolyte additive in a lithium-sulfurized polyacrylonitrile battery. Chem. Commun. 2019, 55, 2376–2379.

    Article  CAS  Google Scholar 

  271. Dai, H. L.; **, K.; Liu, X.; Lai, C.; Zhang, S. Q. Cationic surfactant based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. J. Am. Chem. Soc. 2018, 140, 17515–17521.

    Article  CAS  Google Scholar 

  272. Tao, R.; Bi, X. X.; Li, S.; Yao, Y.; Wu, F.; Wang, Q.; Zhang, C. Z.; Lu, J. Kinetics tuning the electrochemistry of lithium dendrites formation in lithium batteries through electrolytes. ACS Appl. Mater. Interfaces 2017, 9, 7003–7008.

    Article  CAS  Google Scholar 

  273. Liu, Y. Y.; Xu, X. Y.; Sadd, M.; Kapitanova, O. O.; Krivchenko, V. A.; Ban, J.; Wang, J. L.; Jiao, X. X.; Song, Z. X.; Song, J. X. et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Adv. Sci. 2021, 8, 2003301.

    Article  CAS  Google Scholar 

  274. Yang, H. C.; Yin, L. C.; Shi, H. F.; He, K.; Cheng, H. M.; Li, F. Suppressing lithium dendrite formation by slowing its desolvation kinetics. Chem. Commun. 2019, 55, 13211–13214.

    Article  CAS  Google Scholar 

  275. Boyle, D. T.; Kong, X.; Pei, A.; Rudnicki, P. E.; Shi, F. F.; Huang, W.; Bao, Z. N.; Qin, J.; Cui, Y. Transient voltammetry with ultramicroelectrodes reveals the electron transfer kinetics of lithium metal anodes. ACS Energy Lett. 2020, 5, 701–709.

    Article  CAS  Google Scholar 

  276. Kurchin, R.; Viswanathan, V. Marcus—Hush—Chidsey kinetics at electrode—electrolyte interfaces. J. Chem. Phys. 2020, 153, 134706.

    Article  CAS  Google Scholar 

  277. Wang, S. M.; Qu, J. Y.; Wu, F.; Yan, K.; Zhang, C. Z. Cycling performance and kinetic mechanism analysis of a Li metal anode in series-concentrated ether electrolytes. ACS Appl. Mater. Interfaces 2020, 12, 8366–8375.

    Article  CAS  Google Scholar 

  278. Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

    Article  Google Scholar 

  279. Fan, X. L.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J. J.; Xu, K. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018, 4, 174–185.

    Article  CAS  Google Scholar 

  280. Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

    Article  CAS  Google Scholar 

  281. Cho, S. J.; Yu, D. E.; Pollard, T. P.; Moon, H.; Jang, M.; Borodin, O.; Lee, S. Y. Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes. iScience 2020, 23, 100844.

    Article  CAS  Google Scholar 

  282. Dokko, K.; Tachikawa, N.; Yamauchi, K.; Tsuchiya, M.; Yamazaki, A.; Takashima, E.; Park, J. W.; Ueno, K.; Seki, S.; Serizawa, N. et al. Solvate ionic liquid electrolyte for Li-S batteries. J. Electrochem. Soc. 2013, 160, A1304–A1310.

    Article  CAS  Google Scholar 

  283. Zhang, L. L.; Wan, F.; Wang, X. Y.; Cao, H.; Dai, X.; Niu, Z. Q.; Wang, Y. J.; Chen, J. Dual-functional graphene carbon as polysulfide trapper for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 5594–5602.

    Article  CAS  Google Scholar 

  284. Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.

    Article  CAS  Google Scholar 

  285. Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in develo** salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.

    Article  CAS  Google Scholar 

  286. Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

    Article  CAS  Google Scholar 

  287. Zhu, S. D.; Chen, J. Dual strategy with Li-ion solvation and solid electrolyte interphase for high Coulombic efficiency of lithium metal anode. Energy Storage Mater. 2022, 44, 48–56.

    Article  Google Scholar 

  288. Weng, W.; Pol, V. G.; Amine, K. Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li-S batteries. Adv. Mater. 2013, 25, 1608–1615.

    Article  CAS  Google Scholar 

  289. Azimi, N.; Weng, W.; Takoudis, C.; Zhang, Z. C. Improved performance of lithium-sulfur battery with fluorinated electrolyte. Electrochem. Commun. 2013, 37, 96–99.

    Article  CAS  Google Scholar 

  290. Azimi, N.; Xue, Z.; Bloom, I.; Gordin, M. L.; Wang, D. H.; Daniel, T.; Takoudis, C.; Zhang, Z. C. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2015, 7, 9169–9177.

    Article  CAS  Google Scholar 

  291. Shen, C.; **e, J. X.; Zhang, M.; Andrei, P.; Hendrickson, M.; Plichta, E. J.; Zheng, J. P. Understanding the role of lithium polysulfide solubility in limiting lithium-sulfur cell capacity. Electrochim. Acta 2017, 248, 90–97.

    Article  CAS  Google Scholar 

  292. Karaseva, E. V.; Kuzmina, E. V.; Kolosnitsyn, D. V.; Shakirova, N. V.; Sheina, L. V.; Kolosnitsyn, V. S. The mechanism of effect of support salt concentration in electrolyte on performance of lithium-sulfur cells. Electrochim. Acta 2019, 296, 1102–1114.

    Article  CAS  Google Scholar 

  293. Dörfler, S.; Althues, H.; Härtel, P.; Abendroth, T.; Schumm, B.; Kaskel, S. Challenges and key parameters of lithium-sulfur batteries on pouch cell level. Joule 2020, 4, 539–554.

    Article  Google Scholar 

  294. Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium-sulfur batteries. ACS Cent. Sci. 2020, 6, 1095–1104.

    Article  CAS  Google Scholar 

  295. Chen, S. R.; Niu, C. J.; Lee, H.; Li, Q. Y.; Yu, L.; Xu, W.; Zhang, J. G.; Dufek, E. J.; Whittingham, M. S.; Meng, S. et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. Joule 2019, 3, 1094–1105.

    Article  CAS  Google Scholar 

  296. Shi, L. L.; Bak, S. M.; Shadike, Z.; Wang, C. Q.; Niu, C. J.; Northrup, P.; Lee, H.; Baranovskiy, A. Y.; Anderson, C. S.; Qin, J. et al. Reaction heterogeneity in practical high-energy lithium-sulfur pouch cells. Energy Environ. Sci. 2020, 13, 3620–3632.

    Article  CAS  Google Scholar 

  297. Chen, Z. X.; Zhao, M.; Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Huang, J. Q. Toward practical high-energy-density lithium-sulfur pouch cells: A review. Adv. Mater. 2022, 2201555.

  298. Ye, G.; Zhao, M.; Hou, L. P.; Chen, W. J.; Zhang, X. Q.; Li, B. Q.; Huang, J. Q. Evaluation on a 400 Wh·kg−1 lithium-sulfur pouch cell. J. Energy Chem. 2022, 66, 24–29.

    Article  CAS  Google Scholar 

  299. Cheng, Q.; Chen, Z. X.; Li, X. Y.; Hou, L. P.; Bi, C. X.; Zhang, X. Q.; Huang, J. Q.; Li, B. Q. Constructing a 700 Wh·kg−1-level rechargeable lithium-sulfur pouch cell. J. Energy. Chem. 2023, 76, 181–186.

    Article  CAS  Google Scholar 

  300. Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries. Mater. Today 2021, 45, 62–76.

    Article  CAS  Google Scholar 

  301. Yang, X. X.; Li, X. T.; Zhao, C. F.; Fu, Z. H.; Zhang, Q. S.; Hu, C. Promoted deposition of three-dimensional Li2S on catalytic Co phthalocyanine nanorods for stable high-loading lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 32752–32763.

    Article  CAS  Google Scholar 

  302. Cui, X. M.; Chu, Y.; Wang, X. H.; Zhang, X. Z.; Li, Y. X.; Pan, Q. M. Stabilizing lithium metal anodes by a self-healable and Li-regulating interlayer. ACS Appl. Mater. Interfaces 2021, 13, 44983–44990.

    Article  CAS  Google Scholar 

  303. Wang, Z. Y.; Lu, Z. X.; Guo, W.; Luo, Q.; Yin, Y. H.; Liu, X. B.; Li, Y. S.; **a, B. Y.; Wu, Z. P. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries. Adv. Mater. 2021, 33, 2006702.

    Article  CAS  Google Scholar 

  304. Gong, L. Y.; Zhang, H.; Wang, Y.; Luo, E. G.; Li, K.; Gao, L. Q.; Wang, Y. M.; Wu, Z. J.; **, Z.; Ge, J. J. et al. Bridge bonded oxygen ligands between approximated FeN4 Sites confer catalysts with high ORR performance. Angew. Chem., Int. Ed. 2020, 59, 13923–13928.

    Article  CAS  Google Scholar 

  305. Wu, J. Y.; Rao, Z. X.; Liu, X. T.; Shen, Y.; Yuan, L. X.; Li, Z.; **e, X. L.; Huang, Y. H. Composite lithium metal anodes with lithiophilic and low-tortuosity scaffold enabling ultrahigh currents and capacities in carbonate electrolytes. Adv. Funct. Mater. 2021, 31, 2009961.

    Article  CAS  Google Scholar 

  306. Moorthy, B.; Ponraj, R.; Yun, J. H.; Wang, J. E.; Kim, D. J.; Kim, D. K. Ice-templated free-standing reduced graphene oxide for dendrite-free lithium metal batteries. ACS Appl. Energy Mater. 2020, 3, 11053–11060.

    Article  CAS  Google Scholar 

  307. Chang, J.; Shang, J.; Sun, Y. M.; Ono, L. K.; Wang, D. R.; Ma, Z. J.; Huang, Q. Y.; Chen, D. D.; Liu, G. Q.; Cui, Y. et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 2018, 9, 4480.

    Article  Google Scholar 

  308. Han, Z.; Li, S.; Sun, M.; He, R.; Zhong, W.; Yu, C.; Cheng, S.; **e, J. Fluorobenzene diluted low-density electrolyte for high-energy density and high-performance lithium-sulfur batteries. J. Energy Chem. 2022, 68, 752–761.

    Article  CAS  Google Scholar 

  309. Liu, T.; Shi, Z.; Li, H. J.; Xue, W. J.; Liu, S. S.; Yue, J. M.; Mao, M. L.; Hu, Y. S.; Li, H.; Huang, X. J. et al. Low-density fluorinated silane solvent enhancing deep cycle lithium-sulfur batteries’ lifetime. Adv. Mater. 2021, 33, 2102034.

    Article  CAS  Google Scholar 

  310. He, L.; Shao, S. Y.; Zong, C. X.; Hong, B.; Wang, M. R.; Lai, Y. Q. Electrode interface engineering in lithium-sulfur batteries enabled by a trifluoroacetamide-based electrolyte. ACS Appl. Mater. Interfaces 2022, 14, 31814–31823.

    Article  CAS  Google Scholar 

  311. Weller, C.; Thieme, S.; Härtel, P.; Althues, H.; Kaskel, S. Intrinsic shuttle suppression in lithium-sulfur batteries for pouch cell application. J. Electrochem. Soc. 2017, 164, A3766–A3771.

    Article  CAS  Google Scholar 

  312. Zhang, X. Q.; **, Q.; Nan, Y. L.; Hou, L. P.; Li, B. Q.; Chen, X.; **, Z. H.; Zhang, X. T.; Huang, J. Q.; Zhang, Q. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 15503–15509.

    Article  CAS  Google Scholar 

  313. He, Y. B.; Chang, Z.; Wu, S. C.; Qiao, Y.; Bai, S. Y.; Jiang, K. Z.; He, P.; Zhou, H. S. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater. 2018, 8, 1802130.

    Article  Google Scholar 

  314. Xu, J.; An, S. H.; Song, X. Y.; Cao, Y. J.; Wang, N.; Qiu, X.; Zhang, Y.; Chen, J. W.; Duan, X. L.; Huang, J. H. et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 2021, 33, 2105178.

    Article  CAS  Google Scholar 

  315. Song, C. L.; Li, Z. H.; Ma, L. Y.; Li, M. Z.; Huang, S.; Hong, X. J.; Cai, Y. P.; Lan, Y. Q. Single-atom zinc and anionic framework as Janus separator coatings for efficient inhibition of lithium dendrites and shuttle effect. ACS Nano 2021, 15, 13436–13443.

    Article  CAS  Google Scholar 

  316. Jiang, J. C.; Fan, Q. N.; Liu, H. K.; Chou, S. L.; Konstantinov, K.; Wang, J. Z. Understanding the effects of the low-concentration electrolyte on the performance of high-energy-density Li-S batteries. ACS Appl. Mater. Interfaces 2021, 13, 28405–28414.

    Article  CAS  Google Scholar 

  317. Chu, F. L.; Wang, M.; Liu, J. M.; Guan, Z. Q.; Yu, H. Y.; Liu, B.; Wu, F. X. Low concentration electrolyte enabling cryogenic lithium-sulfur batteries. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202205393.

Download references

Acknowledgements

This work was supported by the fellowship of the National Natural Science Foundation of China (No. 22209177), the China Postdoctoral Science Foundation (No. 2021M703149), the Strategy Priority Research Program of Chinese Academy of Science (No. XDA17020404), the R&D Projects in Key Areas of Guangdong Province (No. 2019B090908001), and the High-Specific-Energy Primary Power Battery Project (No. 2020-PYS/K-YY-J033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Q., Zhu, S. & Chen, J. A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Res. 16, 8097–8138 (2023). https://doi.org/10.1007/s12274-022-5227-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5227-0

Keywords

Navigation