Log in

Real-time in situ observation of P53-mediated cascade activation of apoptotic pathways with nucleic acid multicolor fluorescent probes based on symmetrical gold nanostars

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

T-2 toxin, one of the most dangerous natural pollutants, induces apoptosis through multiple pathways. Amongst, P53 mediated apoptosis pathway, an important collection of molecules, plays a key role in cell vital activity. Real-time monitoring of upstream and downstream activation relationships of P53 mRNA, Bax mRNA, and cytochrome c (Cyt c) in signaling pathways is of great significance for understanding the apoptotic machinery in human physiology. In this work, a novel nucleic acid multicolor fluorescent probe, based on silica-coated symmetric gold nanostars (S-AuNSs@SiO2), was developed for highly sensitive in situ real-time imaging of P53 mRNA, Bax mRNA, and Cyt c during T-2 toxin-induced apoptosis. The nucleic acid chains modified with carboxyl groups were modified on the surface of S-AuNSs@SiO2 by amide reaction. The complementary chains of targeted mRNA and the aptamer of targeted Cyt c were modified with different fluorophores, respectively, and successfully hybridized on S-AuNSs@SiO2 surface. When targets were present, the fluorescent chains bound to the targets and detached from the material, resulting in the quenched fluorescence being revived. The probes based on S-AuNSs showed excellent performance is partly ascribed to the presence of 20 symmetric “hot spots”. Notably, the amide-bonded probe exhibited excellent anti-interference capability against biological agents (nucleases and biothiols). During the real-time fluorescence imaging of T-2 toxin-induced apoptosis, the corresponding fluorescence signals of P53 mRNA, Bax mRNA, and Cyt c were observed sequentially. Therefore, S-AuNSs@SiO2 probe not only provides a novel tool for real-time monitoring of apoptosis pathways cascade but also has considerable potential in disease diagnosis and pharmaceutical medical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vidal, A.; Mengelers, M.; Yang, S. P.; De Saeger, S.; De Boevre, M. Mycotoxin biomarkers of exposure: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1127–1155.

    Google Scholar 

  2. Yang, X.; Zhang, X. L.; Zhang, J.; Ji, Q.; Huang, W. Y.; Zhang, X. Y.; Li, Y. F. Spermatogenesis disorder caused by T-2 toxin is associated with germ cell apoptosis mediated by oxidative stress. Environ. Pollut. 2019, 251, 372–379.

    CAS  Google Scholar 

  3. Dai, C. S.; **ao, X. L.; Sun, F. F.; Zhang, Y.; Hoyer, D.; Shen, J. Z.; Tang, S. S.; Velkov, T. T-2 toxin neurotoxicity: Role of oxidative stress and mitochondrial dysfunction. Arch. Toxicol. 2019, 93, 3041–3056.

    CAS  Google Scholar 

  4. Yang, X.; Liu, P. L.; Zhang, X. L.; Zhang, J.; Cui, Y. L.; Song, M.; Li, Y. F. T-2 toxin causes dysfunction of Sertoli cells by inducing oxidative stress. Ecotoxicol. Environ. Saf. 2021, 225, 112702.

    CAS  Google Scholar 

  5. Nagata, S.; Tanaka, M. Programmed cell death and the immune system. Nat. Rev. Immunol. 2017, 17, 333–340.

    CAS  Google Scholar 

  6. Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516.

    CAS  Google Scholar 

  7. Del Re, D. P.; Amgalan, D.; Linkermann, A.; Liu, Q. H.; Kitsis, R. N. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol. Rev. 2019, 99, 1765–1817.

    CAS  Google Scholar 

  8. **a, P.; Liu, Y. N.; Cheng, Z. K. Signaling pathways in cardiac myocyte apoptosis. BioMed Res. Int. 2016, 2016, 9583268.

    Google Scholar 

  9. Yang, F.; Liao, J. Z.; Yu, W. L.; Qiao, N.; Guo, J. Y.; Han, Q. Y.; Li, Y.; Hu, L. M.; Pan, J. Q.; Tang, Z. X. Exposure to copper induces mitochondria-mediated apoptosis by inhibiting mitophagy and the PINK1/parkin pathway in chicken (Gallus gallus) livers. J. Hazard. Mater. 2021, 408, 124888.

    CAS  Google Scholar 

  10. Wei, H. D.; Qu, L. Z.; Dai, S. Y.; Li, Y.; Wang, H. L.; Feng, Y. L.; Chen, X. J.; Jiang, L. Y.; Guo, M.; Li, J. et al. Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis. Nat. Commun. 2021, 12, 2280.

    CAS  Google Scholar 

  11. Atatreh, N.; Ghattas, M. A.; Bardaweel, S. K.; Al Rawashdeh, S.; Al Sorkhy, M. Identification of new inhibitors of Mdm2-p53 interaction via pharmacophore and structure-based virtual screening. Drug Des. Dev. Ther. 2018, 12, 3741–3752.

    CAS  Google Scholar 

  12. Cosentino, K.; García-Sáez, A. J. Bax and bak pores: Are we closing the circle? Trends Cell Biol. 2017, 27, 266–275.

    CAS  Google Scholar 

  13. Chipuk, J. E.; Kuwana, T.; Bouchier-Hayes, L.; Droin, N. M.; Newmeyer, D. D.; Schuler, M.; Green, D. R. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004, 303, 1010–1014.

    CAS  Google Scholar 

  14. Tang, J.; Song, M. Y.; Watanabe, G.; Nagaoka, K.; Rui, X. L.; Li, C. M. Effects of 4-nitrophenol on expression of the ER-α and AhR signaling pathway-associated genes in the small intestine of rats. Environ. Pollut. 2016, 216, 27–37.

    CAS  Google Scholar 

  15. Han, Z. Q.; Liu, D. M.; Chen, L.; He, Y. C.; Tian, X. D.; Qi, L. S.; Chen, L. W.; Luo, Y.; Chen, Z. Y.; Hu, X. M. et al. PNO1 regulates autophagy and apoptosis of hepatocellular carcinoma via the MAPK signaling pathway. Cell Death Dis. 2021, 12, 552.

    CAS  Google Scholar 

  16. Sun, G.; Ma, B.; Guo, W. J.; Shan, M. H.; Ma, B. L. BRCA1 subcellular localization regulated by PI3K signaling pathway in triple negative breast cancer MDA-MB-231 cells and hormone-sensitve T47D cells. J. Clin. Oncol. 2018, 36, e13115.

    Google Scholar 

  17. Kirsanov, K.; Fetisov, T.; Lesovaya, E. A.; Maksimova, V.; Trukhanova, L.; Antoshina, E.; Gor’kova, T.; Morozova, O.; Safina, A.; Fleyshman, D. et al. Prevention of colorectal carcinogenesis by DNA-binding small-molecule curaxin CBL0137 involves suppression of Wnt signaling. Cancer Prev. Res. 2020, 13, 53–64.

    CAS  Google Scholar 

  18. Chen, X. X.; Niu, L. Y.; Yang, Q. Z. Visualizing the underlying signaling pathway related to nitric oxide and glutathione in cardiovascular disease therapy by a sequentially activated fluorescent probe. Anal. Chem. 2021, 93, 3922–3928.

    CAS  Google Scholar 

  19. Hang, Y. J.; Boryczka, J.; Wu, N. Q. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: A review. Chem. Soc. Rev. 2022, 51, 329–375.

    CAS  Google Scholar 

  20. Gao, X. N.; Li, J.; Luan, M. M.; Li, Y. H.; Pan, W.; Li, N.; Tang, B. Real-time in situ monitoring of signal molecules’ evolution in apoptotic pathway via Au−Se bond constructed nanoprobe. Biosens. Bioelectron. 2020, 147, 111755.

    CAS  Google Scholar 

  21. Kyriazi, M. E.; Giust, D.; El-Sagheer, A. H.; Lackie, P. M.; Muskens, O. L.; Brown, T.; Kanaras, A. G. Multiplexed mRNA sensing and combinatorial-targeted drug delivery using DNA-gold nanoparticle dimers. ACS Nano 2018, 12, 3333–3340.

    CAS  Google Scholar 

  22. Zhu, R.; Li, J.; Lin, L. S.; Song, J. B.; Yang, H. H. Emerging plasmonic assemblies triggered by DNA for biomedical applications. Adv. Funct. Mater. 2021, 31, 2005709.

    CAS  Google Scholar 

  23. Gao, Y. S.; Zhang, S. B.; Wu, C. W.; Li, Q.; Shen, Z. F.; Lu, Y.; Wu, Z. S. Self-protected DNAzyme walker with a circular bulging DNA shield for amplified imaging of miRNAs in living cells and mice. ACS Nano 2021, 15, 19211–19224.

    CAS  Google Scholar 

  24. Hu, B.; Kong, F. P.; Gao, X. N.; Jiang, L. L.; Li, X. F.; Gao, W.; Xu, K. H.; Tang, B. Avoiding thiol compound interference: A nanoplatform based on high-fidelity Au−Se bonds for biological applications. Angew. Chem., Int. Ed. 2018, 57, 5306–5309.

    CAS  Google Scholar 

  25. Yang, Y. J.; Huang, J.; Yang, X. H.; Quan, K.; Wang, H.; Ying, L.; **e, N. L.; Ou, M.; Wang, K. M. FRET nanoflares for intracellular mRNA detection: Avoiding false positive signals and minimizing effects of system fluctuations. J. Am. Chem. Soc. 2015, 137, 8340–8343.

    CAS  Google Scholar 

  26. Chaudhari, M. B.; Gnanaprakasam, B. Recent advances in the metal-catalyzed activation of amide bonds. Chem. Asian J. 2019, 14, 76–93.

    CAS  Google Scholar 

  27. Souza, B. S.; Mora, J. R.; Wanderlind, E. H.; Clementin, R. M.; Gesser, J. C.; Fiedler, H. D.; Nome, F.; Menger, F. M. Transforming a stable amide into a highly reactive one: Capturing the essence of enzymatic catalysis. Angew. Chem., Int. Ed. 2017, 56, 5345–5348.

    CAS  Google Scholar 

  28. Pill, M. F.; East, A. L. L.; Marx, D.; Beyer, M. K.; Clausen-Schaumann, H. Mechanical activation drastically accelerates amide bond hydrolysis, matching enzyme activity. Angew. Chem., Int. Ed. 2019, 58, 9787–9790.

    CAS  Google Scholar 

  29. Mrówczyński, R. Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 7541–7561.

    Google Scholar 

  30. Yang, L. T.; Kim, T. H.; Cho, H. Y.; Luo, J.; Lee, J. M.; Chueng, S. T. D.; Hou, Y. N.; Yin, P. T.; Han, J. Y.; Kim, J. H. et al. Hybrid graphene-gold nanoparticle-based nucleic acid conjugates for cancer-specific multimodal imaging and combined therapeutics. Adv. Funct. Mater. 2021, 31, 2006918.

    CAS  Google Scholar 

  31. Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property. J. Am. Chem. Soc. 2015, 137, 10460–10463.

    CAS  Google Scholar 

  32. Li, S. S.; Kong, Q. Y.; Zhang, M.; Yang, F.; Kang, B.; Xu, J. J.; Chen, H. Y. Plasmon-resonance-energy-transfer-based spectroscopy on single nanoparticles: Biomolecular recognition and enzyme kinetics. Anal. Chem. 2018, 90, 3833–3841.

    CAS  Google Scholar 

  33. Ahmad, N.; Wang, G.; Nelayah, J.; Ricolleau, C.; Alloyeau, D. Exploring the formation of symmetric gold nanostars by liquid-cell transmission electron microscopy. Nano Lett. 2017, 17, 4194–4201.

    CAS  Google Scholar 

  34. Dondapati, S. K.; Sau, T. K.; Hrelescu, C.; Klar, T. A.; Stefani, F. D.; Feldmann, J. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 2010, 4, 6318–6322.

    CAS  Google Scholar 

  35. Luo, G. F.; Chen, W. H.; Lei, Q.; Qiu, W. X.; Liu, Y. X.; Cheng, Y. J.; Zhang, X. Z. A Triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv. Funct. Mater. 2016, 26, 4339–4350.

    CAS  Google Scholar 

  36. Walters, C. M.; Pao, C.; Gagnon, B. P.; Zamecnik, C. R.; Walker, G. C. Bright Surface-enhanced Raman scattering with fluorescence quenching from silica encapsulated J-aggregate coated gold nanoparticles. Adv. Mater. 2018, 30, 1705381.

    Google Scholar 

  37. Blanco-Formoso, M.; Sousa-Castillo, A.; **ao, X. F.; Marino-Lopez, A.; Turino, M.; Pazos-Perez, N.; Giannini, V.; Correa-Duarte, M. A.; Alvarez-Puebla, R. A. Boosting the analytical properties of gold nanostars by single particle confinement into yolk porous silica shells. Nanoscale 2019, 11, 21872–21879.

    CAS  Google Scholar 

  38. Zhou, J. L.; Zhao, R. X.; Liu, S. K.; Feng, L. L.; Li, W. T.; He, F.; Gai, S. L.; Yang, P. P. Europium doped silicon quantum dot As a novel FRET based dual detection probe: Sensitive detection of tetracycline, zinc, and cadmium. Small Methods 2021, 5, 2100812.

    CAS  Google Scholar 

  39. Wang, D.; Chen, J.; Ren, L.; Li, Q. L.; Li, D. D.; Yu, J. H. AIEgen-functionalised mesoporous silica nanoparticles as a FRET donor for monitoring drug delivery. Inorg. Chem. Front. 2017, 4, 468–472.

    CAS  Google Scholar 

  40. An, H. Y.; Song, Z. M.; Li, P.; Wang, G.; Ma, B. Q.; Wang, X. P. Development of biofabricated gold nanoparticles for the treatment of alleviated arthritis pain. Appl. Nanosci. 2019, 10, 617–622.

    Google Scholar 

  41. Biao, L. H.; Tan, S. N.; Meng, Q. H.; Gao, J.; Zhang, X. W.; Liu, Z. G.; Fu, Y. J. Green synthesis, characterization and application of proanthocyanidins-functionalized gold nanoparticles. Nanomaterials 2018, 8, 53.

    Google Scholar 

  42. Verma, D.; Sharma, V.; Okram, G. S.; Jain, S. Ultrasound-assisted high-yield multicomponent synthesis of triazolo[1,2-a]indazole-triones using silica-coated ZnO nanoparticles as a heterogeneous catalyst. Green Chem. 2017, 19, 5885–5899.

    CAS  Google Scholar 

  43. Hosseinzadeh, S. Z.; Babazadeh, M.; Shahverdizadeh, G. H.; Es’haghi, M.; Hosseinzadeh-Khanmiri, R. Silica encapsulated-gold nanoparticles as a nano-reactor for aerobic oxidation of benzyl alcohols and tandem oxidative A3 coupling reactions in water. Catal. Lett. 2020, 150, 2784–2791.

    CAS  Google Scholar 

  44. Brum, L. F. W.; Dos Santos, C.; Zimnoch Santos, J. H.; Brandelli, A. Structured silica materials as innovative delivery systems for the bacteriocin nisin. Food Chem. 2022, 366, 130599.

    CAS  Google Scholar 

  45. Zhang, L. P.; Zhou, Y. M.; Shi, G.; Sang, X. X.; Ni, C. H. Preparations of hyperbranched polymer nano micelles and the pH/redox controlled drug release behaviors. Mater. Sci. Eng. C 2017, 79, 116–122.

    CAS  Google Scholar 

  46. Li, Y. J.; Hei, M. Y.; Xu, Y. F.; Qian, X. H.; Zhu, W. P. Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery. Int. J. Pharm. 2016, 511, 689–702.

    CAS  Google Scholar 

  47. Lv, Y.; Li, J.; Chen, H.; Bai, Y.; Zhang, L. Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles as hepatocellular carcinoma-targeted drug carrier. Int. J. Nanomed. 2017, 12, 4361–4370.

    CAS  Google Scholar 

  48. de Q. Silveira, G.; Chen, Z. W.; Barry, E. F.; Diroll, B. T.; Lee, B.; Rajh, T.; Rozhkova, E. A.; Laible, P. D.; Fry, H. C. Energy transfer induced by dye encapsulation in a hybrid nanoparticle-purple membrane reversible assembly. Adv. Funct. Mater. 2019, 29, 1904899.

    Google Scholar 

  49. Simoncelli, S.; Makarova, M.; Wardley, W.; Owen, D. M. Toward an axial nanoscale ruler for fluorescence microscopy. ACS Nano 2017, 11, 11762–11767.

    CAS  Google Scholar 

  50. Wang, N. N.; Li, J.; He, B. S.; Deng, T.; Yang, J. F.; Li, J. S. Two-photon excitation nanoprobe for DNases activity imaging assay in hepatic ischemia reperfusion injury. Sens. Actuators B Chem. 2019, 298, 126853.

    CAS  Google Scholar 

  51. Tamkovich, S. N.; Cherepanova, A. V.; Kolesnikova, E. V.; Rykova, E. Y.; Pyshnyi, D. V.; Vlassov, V. V.; Laktionov, P. P. Circulating DNA and DNase activity in human blood. Ann. N. Y. Acad. Sci. 2006, 1075, 191–196.

    CAS  Google Scholar 

  52. Seferos, D. S.; Giljohann, D. A.; Hill, H. D.; Prigodich, A. E.; Mirkin, C. A. Nano-flares: Probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 2007, 129, 15477–15479.

    CAS  Google Scholar 

  53. Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, 1027–1030.

    CAS  Google Scholar 

  54. Liu, B.; Zhou, P.; Wang, K. Y.; Gong, S. H.; Luan, M. M.; Li, N.; Tang, B. Avoiding false positive signals: A powerful and reliable Au−Se dual-color probe. ACS Sens. 2021, 6, 1949–1955.

    CAS  Google Scholar 

  55. Qing, Z. H.; Luo, G. Y.; **ng, S. H.; Zou, Z.; Lei, Y. L.; Liu, J. W.; Yang, R. H. Pt−S bond-mediated nanoflares for high-fidelity intracellular applications by avoiding thiol cleavage. Angew. Chem., Int. Ed. 2020, 59, 14044–14048.

    CAS  Google Scholar 

  56. He, B. S.; Dong, X. Z. Hierarchically porous Zr-MOFs labelled methylene blue as signal tags for electrochemical patulin aptasensor based on ZnO nano flower. Sens. Actuator, B Chim. 2019, 294, 192–198.

    CAS  Google Scholar 

  57. Chen, S.; Liu, P.; Su, K. W.; Li, X.; Qin, Z.; Xu, W.; Chen, J.; Li, C. R.; Qiu, J. F. Electrochemical aptasensor for thrombin using co-catalysis of hemin/G-quadruplex DNAzyme and octahedral Cu2O−Au nanocomposites for signal amplification. Biosens. Bioelectron. 2018, 99, 338–345.

    CAS  Google Scholar 

  58. Zhang, H. J.; Kou, Y. M.; Li, J. B.; Chen, L.; Mao, Z.; Han, X. X.; Zhao, B.; Ozaki, Y. Nickel nanowires combined with surface-enhanced Raman spectroscopy: Application in label-free detection of cytochrome c-mediated apoptosis. Anal. Chem. 2019, 91, 1213–1216.

    CAS  Google Scholar 

  59. Li, N.; Chang, C. Y.; Pan, W.; Tang, B. A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew. Chem. 2012, 124, 7544–7548.

    Google Scholar 

  60. Zhong, L.; Cai, S. X.; Huang, Y. D.; Yin, L. T.; Yang, Y. L.; Lu, C. H.; Yang, H. H. DNA octahedron-based fluorescence nanoprobe for dual tumor-related mRNAs detection and imaging. Anal. Chem. 2018, 90, 12059–12066.

    CAS  Google Scholar 

  61. Wang, Y.; Li, Z. H.; Liu, M. S.; Xu, J. J.; Hu, D. H.; Lin, Y. H.; Li, J. H. Multiple-targeted graphene-based nanocarrier for intracellular imaging of mRNAs. Anal. Chim. Acta 2017, 983, 1–8.

    CAS  Google Scholar 

  62. Li, C. B.; Chen, P. F.; Khan, I. M.; Wang, Z. P.; Zhang, Y.; Ma, X. Y. Fluorescence-Raman dual-mode quantitative detection and imaging of small-molecule thiols in cell apoptosis with DNA-modified gold nanoflowers. J. Mater. Chem. B 2022, 10, 571–581.

    CAS  Google Scholar 

  63. Daniyal, M.; Liu, Y. B.; Yang, Y. P.; **ao, F.; Fan, J. L.; Yu, H. H.; Qiu, Y. X.; Liu, B.; Wang, W.; Yuhui, Q. Anti-gastric cancer activity and mechanism of natural compound “Heilaohulignan C” isolated from Kadsura coccinea. Phytother. Res. 2021, 35, 3977–3987.

    CAS  Google Scholar 

  64. Kaparekar, P. S.; Poddar, N.; Anandasadagopan, S. K. Fabrication and characterization of Chrysin—A plant polyphenol loaded alginate-chitosan composite for wound healing application. Colloids Surf. B Biointerfaces 2021, 206, 111922.

    CAS  Google Scholar 

  65. Kim, E. M.; Jung, C. H.; Kim, J.; Hwang, S. G.; Park, J. K.; Um, H. D. The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting Bcl-2 family proteins. Cancer Res. 2017, 77, 3092–3100.

    CAS  Google Scholar 

  66. Follis, A. V.; Llambi, F.; Merritt, P.; Chipuk, J. E.; Green, D. R.; Kriwacki, R. W. Pin1-induced proline isomerization in cytosolic p53 mediates BAX activation and apoptosis. Mol. Cell 2015, 59, 677–684.

    CAS  Google Scholar 

  67. Xu, F. B.; Li, Y. F.; Cao, Z.; Zhang, J.; Huang, W. Y. AFB1-induced mice liver injury involves mitochondrial dysfunction mediated by mitochondrial biogenesis inhibition. Ecotoxicol. Environ. Saf. 2021, 216, 112213.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the Jiangsu Agriculture Science and Technology Innovation Fund (No. CX (19)2005) and the Social Development Fund Project of Wuxi (No. N20201001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoyuan Ma.

Electronic Supplementary Material

12274_2022_5069_MOESM1_ESM.pdf

Real-time in situ observation of P53-mediated cascade activation of apoptotic pathways with nucleic acid multicolor fluorescent probes based on symmetrical gold nanostars

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Chen, P., Ma, X. et al. Real-time in situ observation of P53-mediated cascade activation of apoptotic pathways with nucleic acid multicolor fluorescent probes based on symmetrical gold nanostars. Nano Res. 16, 5391–5400 (2023). https://doi.org/10.1007/s12274-022-5069-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5069-9

Keywords

Navigation