Log in

Thermal-mechanical-electrical energy conversion system based on Curie effect and soft-contact rotary triboelectric nanogenerator

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Untapped thermal energy, especially low-grade heat below 373 K from various sources, namely ambient, industries residual, and non-concentrated solar energy, is abundant and widely accessible. Despite that, there are huge constraints to recycle this valuable low-grade heat using the existing technologies due to the variability of thermal energy output and the small temperature difference between the heat source and environment. Here, a thermal-mechanical-electrical energy conversion (TMEc) system based on the Curie effect and the soft-contact rotary triboelectric nanogenerator (TENG) is developed to recycle thermal energy in the mid-low temperature range. According to the phase transition mechanism between ferromagnetic and paramagnetic, disk-shaped ferromagnetic materials can realize stable rotation under external magnetic and thermal fields, thus activating the operation of TENGs and realizing the conversion of thermal energy and electrical energy. During the steady rotation process, an open-circuit voltage (VOC) of 173 V and a short-circuit current (ISC) of 1.32 µA are measured. We finally obtained a maximum power of 4.45 mW in the actual working conditions, and it successfully charged different capacitors. This work provides a new method for mid-low temperature energy harvesting and thermal energy transformation and broadens the application of TENG in the field of thermal energy recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, L. G.; Sun, F. R.; Wu, C. Influence of heat transfer law on the performance of a Carnot engine. Appl. Therm. Eng. 1997, 17, 277–282.

    Article  Google Scholar 

  2. Şahi’n, B.; Kodal, A.; Yavuz, H. Maximum power density for an endoreversible Carnot heat engine. Energy 1996, 21, 1219–1225.

    Article  Google Scholar 

  3. Schierning, G. Bring on the heat. Nat. Energy 2018, 3, 92–93.

    Article  CAS  Google Scholar 

  4. Shaulsky, E.; Boo, C.; Lin, S. H.; Elimelech, M. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat. Environ. Sci. Technol. 2015, 49, 5820–5827.

    Article  CAS  Google Scholar 

  5. Hao, F.; Qiu, P. F.; Tang, Y. S.; Bai, S. Q.; **ng, T.; Chu, H. S.; Zhang, Q. H.; Lu, P.; Zhang, T. S.; Ren, D. D. et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 2016, 9, 3120–3127.

    Article  CAS  Google Scholar 

  6. Yu, B. Y.; Duan, J. J.; Cong, H. J.; **e, W. K.; Liu, R.; Zhuang, X. Y.; Wang, H.; Qi, B.; Xu, M.; Wang, Z. L. et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 2020, 370, 342–346.

    Article  CAS  Google Scholar 

  7. Vining, C. B. An inconvenient truth about thermoelectrics. Nat. Mater. 2009, 8, 83–85.

    Article  CAS  Google Scholar 

  8. Wang, D. X.; Ling, X.; Peng, H.; Liu, L.; Tao, L. L. Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation. Energy 2013, 50, 343–352.

    Article  Google Scholar 

  9. Li, T.; Zhang, X.; Lacey, S. D.; Mi, R. Y.; Zhao, X. P.; Jiang, F.; Song, J. W.; Liu, Z. Q.; Chen, G.; Dai, J. Q. et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 2019, 18, 608–613.

    Article  CAS  Google Scholar 

  10. Garcia, S. I.; Garcia, R. F.; Carril, J. C.; Garcia, D. I. A review of thermodynamic cycles used in low temperature recovery systems over the last two years. Renew. Sust. Energy Rev. 2018, 81, 760–767.

    Article  Google Scholar 

  11. Lee, S. W.; Yang, Y.; Lee, H. W.; Ghasemi, H.; Kraemer, D.; Chen, G.; Cui, Y. An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun. 2014, 5, 3942.

    Article  CAS  Google Scholar 

  12. Straub, A. P.; Yip, N. Y.; Lin, S. H.; Lee, J.; Elimelech, M. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes. Nat. Energy 2016, 1, 16090.

    Article  CAS  Google Scholar 

  13. Straub, A. P.; Elimelech, M. Energy efficiency and performance limiting effects in thermo-osmotic energy conversion from low-grade heat. Environ. Sci. Technol. 2017, 51, 12925–12937.

    Article  CAS  Google Scholar 

  14. Shaulsky, E.; Karanikola, V.; Straub, A. P.; Deshmukh, A.; Zucker, I.; Elimelech, M. Asymmetric membranes for membrane distillation and thermo-osmotic energy conversion. Desalination 2019, 452, 141–148.

    Article  CAS  Google Scholar 

  15. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

    Article  CAS  Google Scholar 

  16. Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

    Article  CAS  Google Scholar 

  17. Lee, J. H.; Ryu, H.; Kim, T. Y.; Kwak, S. S.; Yoon, H. J.; Kim, T. H.; Seung, W.; Kim, S. W. Thermally induced strain-coupled highly stretchable and sensitive pyroelectric nanogenerators. Adv. Energy Mater. 2015, 5, 1500704.

    Article  Google Scholar 

  18. Lallart, M.; Yan, L. J.; Miki, H.; Sebald, G.; Diguet, G.; Ohtsuka, M.; Kohl, M. Heusler alloy-based heat engine using pyroelectric conversion for small-scale thermal energy harvesting. Appl. Energy 2021, 288, 116617.

    Article  CAS  Google Scholar 

  19. Kacem, H.; Dhahri, A.; Sassi, Z.; Seveyrat, L.; Lebrun, L.; Perrin, V.; Dhahri, J. Relaxor characteristics and pyroelectric energy harvesting performance of BaTi0.91Sn0.09O3 ceramic. J. Alloys Compd. 2021, 872, 159699.

    Article  CAS  Google Scholar 

  20. Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

    Article  CAS  Google Scholar 

  21. Qin, Y. S.; Wang, Y. S.; Sun, X. Y.; Li, Y. J.; Xu, H.; Tan, Y. S.; Li, Y.; Song, T.; Sun, B. Q. Constant electricity generation in nanostructured silicon by evaporation-driven water flow. Angew. Chem. 2020, 132, 10706–10712.

    Article  Google Scholar 

  22. Lee, M. S.; Chang, J. W.; Park, K.; Yang, D. R. Energetic and exergetic analyses of a closed-loop pressure retarded membrane distillation (PRMD) for low-grade thermal energy utilization and freshwater production. Desalination 2022, 534, 115799.

    Article  CAS  Google Scholar 

  23. Ding, T. P.; Liu, K.; Li, J.; Xue, G. B.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 2017, 27, 1700551.

    Article  Google Scholar 

  24. Zhu, L. L.; Gao, M. M.; Peh, C.; K. N.; Wang, X. Q.; Ho, G. W. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energy Mater. 2018, 8, 1702149.

    Article  Google Scholar 

  25. Kishore, R. A.; Priya, S. A review on low-grade thermal energy harvesting: Materials, methods and devices. Materials 2018, 11, 1433.

    Article  Google Scholar 

  26. Forman, C.; Muritala, I. K.; Pardemann, R.; Meyer, B. Estimating the global waste heat potential. Renew. Sust. Energy Rev. 2016, 57, 1568–1579.

    Article  Google Scholar 

  27. Wang, Z. L. Triboelectric nanogenerator (TENG)—Sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

    Article  CAS  Google Scholar 

  28. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Article  Google Scholar 

  29. Zhang, T. T.; Wen, Z.; Liu, Y. N.; Zhang, Z. Y.; **e, Y. L.; Sun, X. H. Hybridized nanogenerators for multifunctional self-powered sensing: Principles, prototypes, and perspectives. iScience 2020, 23, 101813.

    Article  CAS  Google Scholar 

  30. **e, L. J.; Zhai, N. N.; Liu, Y. N.; Wen, Z.; Sun, X. H. Hybrid triboelectric nanogenerators: From energy complementation to integration. Research 2021, 2021, 9143762.

    Article  CAS  Google Scholar 

  31. Liu, W. L.; Wang, Z.; Hu, C. G. Advanced designs for output improvement of triboelectric nanogenerator system. Mater. Today 2021, 45, 93–119.

    Article  Google Scholar 

  32. Wang, H. B.; Han, M. D.; Song, Y.; Zhang, H. X. Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy 2021, 81, 105627.

    Article  CAS  Google Scholar 

  33. Sriphan, S.; Vittayakorn, N. Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. J. Sci.: Adv. Mater. Devices 2022, 7, 100461.

    CAS  Google Scholar 

  34. Lone, S. A.; Lim, K. C.; Kaswan, K.; Chatterjee, S.; Fan, K. P.; Choi, D.; Lee, S.; Zhang, H. L.; Cheng, J.; Lin, Z. H. Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy 2022, 99, 107318.

    Article  CAS  Google Scholar 

  35. **, X.; Yuan, Z. H.; Shi, Y. P.; Sun, Y. G.; Li, R. N.; Chen, J. H.; Wang, L. F.; Wu, Z. Y.; Wang, Z. L. Triboelectric nanogenerator based on a rotational magnetic ball for harvesting transmission line magnetic energy. Adv. Funct. Mater. 2022, 32, 2108827.

    Article  CAS  Google Scholar 

  36. Lin, Z. M.; Zhang, B. B.; Zou, H. Y.; Wu, Z. Y.; Guo, H. Y.; Zhang, Y.; Yang, J.; Wang, Z. L. Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability. Nano Energy 2020, 68, 104378.

    Article  CAS  Google Scholar 

  37. Wei, X. L.; Zhao, Z. H.; Zhang, C. G.; Yuan, W.; Wu, Z. Y.; Wang, J.; Wang, Z. L. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 2021, 15, 13200–13208.

    Article  CAS  Google Scholar 

  38. Wu, H.; Wang, J. Y.; Wu, Z. Y.; Kang, S. L.; Wei, X. L.; Wang, H. Q.; Luo, H.; Yang, L. J.; Liao, R. J.; Wang, Z. L. Multi-parameter optimized triboelectric nanogenerator based self-powered sensor network for broadband aeolian vibration online-monitoring of transmission lines. Adv. Energy Mater. 2022, 12, 2103654.

    Article  CAS  Google Scholar 

  39. Yuan, Z. H.; Wei, X. L.; **, X.; Sun, Y. G.; Wu, Z. Y.; Wang, Z. L. Magnetic energy harvesting of transmission lines by the swinging triboelectric nanogenerator. Mater. Today Energy 2021, 22, 100848.

    Article  CAS  Google Scholar 

  40. Lee, D.; Kim, I.; Kim, D. Hybrid tribo-thermoelectric generator for effectively harvesting thermal energy activated by the shape memory alloy. Nano Energy 2021, 82, 105696.

    Article  CAS  Google Scholar 

  41. Li, R. N.; Wei, X. L.; Shi, Y. P.; Yuan, Z. H.; Wang, B. C.; Xu, J. H.; Wang, L. F.; Wu, Z. Y.; Wang, Z. L. Low-grade heat energy harvesting system based on the shape memory effect and hybrid triboelectric-electromagnetic nanogenerator. Nano Energy 2022, 96, 107106.

    Article  CAS  Google Scholar 

  42. Wei, X. L.; Zhao, Z. H.; Wang, L. F.; **, X.; Yuan, Z. H.; Wu, Z. Y.; Wang, Z. L. Energy conversion system based on Curie effect and triboelectric nanogenerator for low-grade heat energy harvesting. Nano Energy 2022, 91, 106652.

    Article  CAS  Google Scholar 

  43. Rodrigues, C.; Pires, A.; Gonçalves, I.; Silva, D.; Oiiveira, J.; Pereira, A.; Ventura, J. Hybridizing triboelectric and thermomagnetic effects: A novel low-grade thermal energy harvesting technology. Adv. Funct. Mater. 2022, 32, 2110288.

    Article  CAS  Google Scholar 

  44. Ibrahim, M.; Jiang, J. X.; Wen, Z.; Sun, X. H. Surface engineering for enhanced triboelectric nanogenerator. Nanoenergy Adv. 2021, 1, 58–80.

    Article  Google Scholar 

  45. Chen, Y. F.; Gao, Z. Q.; Zhang, F. J.; Wen, Z.; Sun, X. H. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022, 2, 20210112.

    Article  Google Scholar 

  46. Chouhan, L.; Srivastava, S. K. A comprehensive review on recent advancements in d0 ferromagnetic oxide materials. Mater. Sci. Semicond. Process. 2022, 147, 106768.

    Article  CAS  Google Scholar 

  47. Chen, J. H.; Wei, X. L.; Wang, B. C.; Li, R. N.; Sun, Y. G.; Peng, Y. T.; Wu, Z. Y.; Wang, P.; Wang, Z. L. Design optimization of soft-contact freestanding rotary triboelectric nanogenerator for high-output performance. Adv. Energy Mater. 2021, 11, 2102106.

    Article  CAS  Google Scholar 

  48. Han, J. J.; Feng, Y. W.; Chen, P. F.; Liang, X.; Pang, H.; Jiang, T.; Wang, Z. L. Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming. Adv. Funct. Mater. 2022, 32, 2108580.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research was supported by the National Natural Science Foundation of China (No. 61503051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhongLin Wang or Zhiyi Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Wei, X., Li, R. et al. Thermal-mechanical-electrical energy conversion system based on Curie effect and soft-contact rotary triboelectric nanogenerator. Nano Res. 16, 2502–2510 (2023). https://doi.org/10.1007/s12274-022-5056-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5056-1

Keywords

Navigation