Log in

Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The formation of moiré superlattices in twisted van der Waals (vdW) homostructures provides a versatile platform for designing the electronic band structure of two-dimensional (2D) materials. In graphene and transition metal dichalcogenides (TMDs) moiré systems, twist angle has been shown to be a key parameter for regulating the moiré superlattice. However, the effect of the modulation of the twist angle on moiré potential and interlayer coupling has not been the subject of experimental investigation. Here, we report the observation of the modulation of moiré potential and intralayer excitons in the WS2/WS2 homostructure. By accurately adjusting the torsion angle of the homobilayers, the depth of the moiré potential can be modulated. The confinement effect of the moiré potential on the intralayer excitons was further demonstrated by the changing of temperature and valley polarization. Furthermore, we show that a detection of atomic reconstructions by the low-frequency Raman map** to map out inhomogeneities in moiré lattices on a large scale, which endows the uniformity of interlayer coupling. Our results provide insights for an in-depth understanding of the behaviors of moiré excitons in the twisted van der Waals homostructure, and promote the study of electrical engineering and topological photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scrace, T.; Tsai, Y.; Barman, B.; Schweidenback, L.; Petrou, A.; Kioseoglou, G.; Ozfidan, I.; Korkusinski, M.; Hawrylak, P. Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers. Nat. Nanotechnol. 2015, 10, 603–607.

    Article  CAS  Google Scholar 

  2. Zhu, Y.; Sun, X. Q.; Tang, Y. L.; Fu, L.; Lu, Y. R. Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Res. 2021, 14, 1912–1936.

    Article  CAS  Google Scholar 

  3. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  CAS  Google Scholar 

  4. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  5. Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

    Article  CAS  Google Scholar 

  6. Wu, L. S.; Cong, C. X.; Shang, J. Z.; Yang, W. H.; Chen, Y.; Zhou, J. D.; Ai, W.; Wang, Y. L.; Feng, S.; Zhang, H. B. et al. Raman scattering investigation of twisted WS2/MoS2 heterostructures: Interlayer mechanical coupling versus charge transfer. Nano Res. 2021, 14, 2215–2223.

    Article  CAS  Google Scholar 

  7. Chen, P.; Zhang, Z. W.; Duan, X. D.; Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129–3151.

    Article  CAS  Google Scholar 

  8. Wu, B.; Wang, Y. P.; Zhong, J. H.; Zeng, C.; Madoune, Y.; Zhu, W. T.; Liu, Z. W.; Liu, Y. P. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 2022, 15, 2661–2666.

    Article  CAS  Google Scholar 

  9. Tang, Y. H.; Li, L. Z.; Li, T. X.; Xu, Y.; Liu, S.; Barmak, K.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Shan, J. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 2020, 579, 353–358.

    Article  CAS  Google Scholar 

  10. Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Zeng, Y. J.; Chen, K. Q.; Liu, Z. W.; Chen, S. L.; Pan, A. L. Evidence for moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light Sci. Appl. 2022, 11, 166.

    Article  Google Scholar 

  11. Shimazaki, Y.; Schwartz, I.; Watanabe, K.; Taniguchi, T.; Kroner, M.; Imamoğlu, A. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 2020, 580, 472–477.

    Article  CAS  Google Scholar 

  12. Shi, H. H.; Zhan, Z.; Qi, Z. K.; Huang, K. X.; van Veen, E.; Silva-Guillén, J. Á.; Zhang, R. X.; Li, P. J.; **e, K.; Ji, H. X. et al. Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat. Commun. 2020, 11, 371.

    Article  CAS  Google Scholar 

  13. Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

    Article  CAS  Google Scholar 

  14. Marcellina, E.; Liu, X.; Hu, Z. H.; Fieramosca, A.; Huang, Y. Q.; Du, W.; Liu, S.; Zhao, J. X.; Watanabe, K.; Taniguchi, T. et al. Evidence for moiré trions in twisted MoSe2 homobilayers. Nano Lett. 2021, 21, 4461–4468.

    Article  CAS  Google Scholar 

  15. Plochocka, P. Excitons in a twisted world. Nat. Nanotechnol. 2020, 15, 727–729.

    Article  CAS  Google Scholar 

  16. Alexeev, E. M.; Ruiz-Tijerina, D. A.; Danovich, M.; Hamer, M. J.; Terry, D. J.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 2019, 567, 81–86.

    Article  CAS  Google Scholar 

  17. Wu, B.; Zheng, H. H.; Ding, J. N.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. Observation of interlayer excitons in trilayer type-II transition metal dichalcogenide heterostructures. Nano Res., in press, https://doi.org/10.1007/s12274-022-4580-3.

  18. Castellanos-Gomez, A.; van der Zant, H. S. J.; Steele, G. A. Folded MoS2 layers with reduced interlayer coupling. Nano Res. 2014, 7, 572–578.

    Article  Google Scholar 

  19. Bekenstein, R.; Pikovski, I.; Pichler, H.; Shahmoon, E.; Yelin, S. F.; Lukin, M. D. Quantum metasurfaces with atom arrays. Nat. Phys. 2020, 16, 676–681.

    Article  CAS  Google Scholar 

  20. Byrnes, T.; Recher, P.; Yamamoto, Y. Mott transitions of exciton polaritons and indirect excitons in a periodic potential. Phys. Rev. B 2010, 81, 205312.

    Article  Google Scholar 

  21. Sung, J.; Zhou, Y.; Scuri, G.; Zólyomi, V.; Andersen, T. I.; Yoo, H.; Wild, D. S.; Joe, A. Y.; Gelly, R. J.; Heo, H. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 2020, 15, 750–754.

    Article  CAS  Google Scholar 

  22. Li, S. F.; Zheng, H. H.; Ding, J. N.; Wu, B.; He, J.; Liu, Z. W.; Liu, Y. P. Dynamic control of moiré potential in twisted WS2-WSe2 heterostructures. Nano Res. 2022, 15, 7688–7694.

    Article  CAS  Google Scholar 

  23. Cai, L.; Duan, H. L.; Liu, Q. H.; Wang, C.; Tan, H.; Hu, W.; Hu, F. C.; Sun, Z. H.; Yan, W. S. Ultrahigh-temperature ferromagnetism in MoS2 Moiré superlattice/graphene hybrid heterostructures. Nano Res. 2021, 14, 4182–4187.

    Article  CAS  Google Scholar 

  24. **, C. H.; Regan, E. C.; Yan, A. M.; Iqbal Bakti Utama, M.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

    Article  CAS  Google Scholar 

  25. Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.

    Article  CAS  Google Scholar 

  26. Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbitcoupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

    Article  Google Scholar 

  27. Yu, J.; Kuang, X. F.; Li, J. Z.; Zhong, J. H.; Zeng, C.; Cao, L. K.; Liu, Z. W.; Zeng, Z. X. S.; Luo, Z. Y.; He, T. C. et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083.

    Article  CAS  Google Scholar 

  28. Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  CAS  Google Scholar 

  29. Lin, K. Q.; Holler, J.; Bauer, J. M.; Parzefall, P.; Scheuck, M.; Peng, B.; Korn, T.; Bange, S.; Lupton, J. M.; Schüller, C. Large-scale map** of moiré superlattices by hyperspectral Raman imaging. Adv. Mater. 2021, 33, 2008333.

    Article  CAS  Google Scholar 

  30. Kang, J.; Li, J. B.; Li, S. S.; **a, J. B.; Wang, L. W. Electronic structural moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 2013, 13, 5485–5490.

    Article  CAS  Google Scholar 

  31. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    Article  CAS  Google Scholar 

  32. Shibata, H. Negative thermal quenching curves in photoluminescence of solids. Jpn. J. Appl. Phys. 1998, 37, 550.

    Article  CAS  Google Scholar 

  33. Fang, Y. T.; Wang, L.; Sun, Q. L.; Lu, T. P.; Deng, Z.; Ma, Z. G.; Jiang, Y.; Jia, H. Q.; Wang, W. X.; Zhou, J. M. et al. Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 2015, 5, 12718.

    Article  CAS  Google Scholar 

  34. Zhao, S. W.; Li, X. X.; Dong, B. J.; Wang, H. D.; Wang, H. W.; Zhang, Y. P.; Han, Z.; Zhang, H. Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: Status and challenges. Rep. Prog. Phys. 2021, 84, 026401.

    Article  Google Scholar 

  35. Yu, J.; Kuang, X. F.; Zhong, J. H.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Wang, S. H.; Dai, P. F.; Yue, X. F. et al. Observation of double indirect interlayer exciton in WSe2/WS2 heterostructure. Opt. Express 2020, 28, 13260–13268.

    Article  CAS  Google Scholar 

  36. Kundu, S.; Naik, M. H.; Krishnamurthy, H. R.; Jain, M. Moiré induced topology and flat bands in twisted bilayer WSe2: A first-principles study. Phys. Rev. B 2022, 105, L081108.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (No. 61775241), Hunan Provincial Science Fund for Distinguished Young Scholars (No. 2020JJ2059), the Youth Innovation Team (No. 2019012) of CSU, Hunan province key research and development project (No. 2019GK2233), and the Science and Technology Innovation Basic Research Project of Shenzhen (No. JCYJ20190806144418859). The authors are also thankful for the support of the High-Performance Complex Manufacturing Key State Lab Project, Central South University (No. ZZYJKT2020-12). Z. W. L. thanks the support from the Australian Research Council (ARC Discovery Project, DP180102976).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan** Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Wu, B., Li, S. et al. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 16, 3429–3434 (2023). https://doi.org/10.1007/s12274-022-4964-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4964-4

Keywords

Navigation