Log in

Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Due to their unique properties and uninterrupted breakthrough in a myriad of clean energy-related applications, carbon-based materials have received great interest. However, the low selectivity and poor conductivity are two primary difficulties of traditional carbon-based materials (zero-dimensional (0D)/one-dimensional (1D)/two-dimensional (2D)), enerating inefficient hydrogen production and impeding the future commercialization of carbon-based materials. To improve hydrogen production, attempts are made to enlarge the surface area of porous three-dimensional (3D) carbon-based materials, achieve uniform interconnected porous channels, and enhance their stability, especially under extreme conditions. In this review, the structural advantages and performance improvements of porous carbon nanotubes (CNTs), g-C3N4, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), MXenes, and biomass-derived carbon-based materials are firstly summarized, followed by discussing the mechanisms involved and assessing the performance of the main hydrogen production methods. These include, for example, photo/electrocatalytic hydrogen production, release from methanolysis of sodium borohydride, methane decomposition, and pyrolysis-gasification. The role that the active sites of porous carbon-based materials play in promoting charge transport, and enhancing electrical conductivity and stability, in a hydrogen production process is discussed. The current challenges and future directions are also discussed to provide guidelines for the development of next-generation high-efficiency hydrogen 3D porous carbon-based materials prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L. A.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133.

    Article  CAS  Google Scholar 

  2. Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Fan, X. H.; Kong, A. G.; Shan, Y. K. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401–411.

    Article  CAS  Google Scholar 

  3. Salcedo-Abraira, P.; Vilela, S. M. F.; Babaryk, A. A.; Cabrero-Antonino, M.; Gregorio, P.; Salles, F.; Navalón, S.; García, H.; Horcajada, P. Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Res. 2021, 14, 450–457.

    Article  CAS  Google Scholar 

  4. Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Li, N.; Zhang, H.; Yu, J. G. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.

    Article  CAS  Google Scholar 

  5. Jiang, J. Z.; **ong, Z. G.; Wang, H. T.; Liao, G. D.; Bai, S. S.; Zou, J.; Wu, P. X.; Zhang, P.; Li, X. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 118, 15–24.

    Article  Google Scholar 

  6. Jiang, J. Z.; Zou, Y. L.; Arramel; Li, F. Y.; Wang, J. M.; Zou, J.; Li, N. Intercalation engineering of MXenes towards highly efficient photo (electrocatalytic) hydrogen evolution reactions. J. Mater. Chem. A 2021, 9, 24195–24214.

    Article  CAS  Google Scholar 

  7. Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

    Article  CAS  Google Scholar 

  8. Jiang, J. Z.; Zhu, L. H.; Zou, J.; Ouyang, L.; Zheng, A. M.; Tang, H. Q. Micro/nano-structured graphitic carbon nitride-Ag nanoparticle hybrids as surface-enhanced Raman scattering substrates with much improved long-term stability. Carbon 2015, 87, 193–205.

    Article  CAS  Google Scholar 

  9. Jiang, J. Z.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q. F.; Zhang, H.; Li, L. J.; Zhai, T. Y.; Wee, A. T. S. Synergistic additivemediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654.

    Article  CAS  Google Scholar 

  10. Shi, X. W.; Dai, C.; Wang, X.; Hu, J. Y.; Zhang, J. Y.; Zheng, L. X.; Mao, L.; Zheng, H. J.; Zhu, M. S. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287.

    Article  CAS  Google Scholar 

  11. Zhang, Y. M.; Zhao, J. H.; Wang, H.; **ao, B.; Zhang, W.; Zhao, X. B.; Lv, T. P.; Thangamuthu, M.; Zhang, J.; Guo, Y. et al. Singleatom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nat. Commun. 2022, 13, 58.

    Article  CAS  Google Scholar 

  12. Wang, Q. F.; Zou, R. Q.; **a, W.; Ma, J.; Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y. Y. C.; **a, D. G.; Xu, Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 2015, 11, 2511–2517.

    Article  CAS  Google Scholar 

  13. Atinafu, D. G.; Dong, W. J.; Wang, C.; Wang, G. Synthesis of porous carbon from cotton using an Mg(OH)2 template for form-stabilized phase change materials with high encapsulation capacity, transition enthalpy and reliability. J. Mater. Chem. A 2018, 6, 8969–8977.

    Article  CAS  Google Scholar 

  14. Mao, E. Y.; Wang, W. Y.; Wan, M. T.; Wang, L.; He, X. M.; Sun, Y. M. Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Res. 2020, 13, 1122–1126.

    Article  CAS  Google Scholar 

  15. He, X. M.; Bai, S. S.; Jiang, J. Z.; Ong, W. J.; Peng, J. H.; **ong, Z. G.; Liao, G. D.; Zou, J.; Li, N. Oxygen vacancy mediated step-scheme heterojunction of WO2.9/g-C3N4 for efficient electrochemical sensing of 4-nitrophenol. Chem. Eng. J. Adv. 2021, 8, 100175.

    Article  CAS  Google Scholar 

  16. Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; Ter Waarbeek, R. F.; De Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186.

    Article  CAS  Google Scholar 

  17. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

    Article  CAS  Google Scholar 

  18. Zhang, S. J.; Zhang, Y. S.; Shao, G. S.; Zhang, P. Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions. Nano Res. 2021, 14, 3942–3951.

    Article  CAS  Google Scholar 

  19. Liang, X. P.; Li, H. F.; Dou, J. X.; Wang, Q.; He, W. Y.; Wang, C. Y.; Li, D. H.; Lin, J. M.; Zhang, Y. Y. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 2020, 32, 2000165.

    Article  CAS  Google Scholar 

  20. Yan, J. S.; Orecchioni, M.; Vitale, F.; Coco, J. A.; Duret, G.; Antonucci, S.; Pamulapati, S. S.; Taylor, L. W.; Dewey, O. S.; Di Sante, M. et al. Biocompatibility studies of macroscopic fibers made from carbon nanotubes: Implications for carbon nanotube macrostructures in biomedical applications. Carbon 2021, 173, 462–476.

    Article  CAS  Google Scholar 

  21. Gilbert, M. T.; Knox, J. H.; Kaur, B. Porous glassy carbon, a new columns packing material for gas chromatography and highperformance liquid chromatography. Chromatographia 1982, 16, 138–146.

    Article  CAS  Google Scholar 

  22. Rzepka, M.; Lamp, P.; de la Casa-Lillo, M. A. Physisorption of hydrogen on microporous carbon and carbon nanotubes. J. Phys. Chem. B 1998, 102, 10894–10898.

    Article  CAS  Google Scholar 

  23. Cinke, M.; Li, J.; Chen, B.; Cassell, A.; Delzeit, L.; Han, J.; Meyyappan, M. Pore structure of raw and purified HiPco singlewalled carbon nanotubes. Chem. Phys. Lett. 2002, 365, 69–74.

    Article  CAS  Google Scholar 

  24. Tao, X. Y.; Zhang, X. B.; Zhang, L.; Cheng, J. P.; Liu, F.; Luo, J. H.; Luo, Z. Q.; Geise, H. J. Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors. Carbon 2006, 44, 1425–1428.

    Article  CAS  Google Scholar 

  25. Bhargava, B.; Reddy, N. K.; Karthikeyan, G.; Raju, R.; Mishra, S.; Singh, S.; Waksman, R.; Virmani, R.; Somaraju, B. A novel paclitaxel-eluting porous carbon-carbon nanoparticle coated, nonpolymeric cobalt-chromium stent: Evaluation in a porcine mode. Catheter. Cardiovasc. Interv. 2006, 67, 698–702.

    Article  Google Scholar 

  26. Lu, Y. M.; Gong, Q. M.; Lu, F. P.; Liang, J.; Ji, L. J.; Nie, Q. D.; Zhang, X. M. Preparation of sulfonated porous carbon nanotubes/activated carbon composite beads and their adsorption of low density lipoprotein. J. Mater. Sci. Mater. Med. 2011, 22, 1855–1862.

    Article  CAS  Google Scholar 

  27. Zheng, X. Y.; Lv, W.; Tao, Y.; Shao, J. J.; Zhang, C.; Liu, D. H.; Luo, J. Y.; Wang, D. W.; Yang, Q. H. Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance. Chem. Mater. 2014, 26, 6896–6903.

    Article  CAS  Google Scholar 

  28. Hou, Y.; Cui, S. M.; Wen, Z. H.; Guo, X. R.; Feng, X. L.; Chen, J. H. Strongly coupled 3D hybrids of N-doped porous carbon nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced electrocatalysis. Small 2015, 11, 5940–5948.

    Article  CAS  Google Scholar 

  29. Zhang, Z. Y.; Liu, K. C.; Feng, Z. Q.; Bao, Y. N.; Dong, B. Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer. Sci. Rep. 2016, 6, 19221.

    Article  CAS  Google Scholar 

  30. Li, Z. L.; Li, H.; Guan, X. Y.; Tang, J. J.; Yusran, Y.; Li, Z.; Xue, M.; Fang, Q. R.; Yan, Y. S.; Valtchev, V. et al. Three-dimensional ionic covalent organic frameworks for rapid, reversible, and selective ion exchange. J. Am. Chem. Soc. 2017, 139, 17771–17774.

    Article  CAS  Google Scholar 

  31. **, J.; Zheng, Y.; Kong, L. B.; Srikanth, N.; Yan, Q. Y.; Zhou, K. Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage. J. Mater. Chem. A 2018, 6, 15710–15717.

    Article  CAS  Google Scholar 

  32. Song, J. J.; Guo, X.; Zhang, J. Q.; Chen, Y.; Zhang, C. Y.; Luo, L. Q.; Wang, F. Y.; Wang, G. X. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 6507–6513.

    Article  CAS  Google Scholar 

  33. Wang, L. B.; Liu, H.; Lv, X. L.; Cui, G. Z.; Gu, G. X. Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloys Compd. 2020, 828, 154251.

    Article  CAS  Google Scholar 

  34. Zhao, H. Q.; Cheng, Y.; Lv, H. L.; Ji, G. B.; Du, Y. W. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 2019, 142, 245–253.

    Article  CAS  Google Scholar 

  35. Wang, C. J.; Yuan, X. Z.; Guo, G. L.; Liang, H. J.; Ma, Z. H.; Li, P. F. Salt template tuning morphology and porosity of biomass-derived N-doped porous carbon with high redox-activation for efficient energy storage. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129552.

    Article  CAS  Google Scholar 

  36. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  CAS  Google Scholar 

  37. Wang, S. Y.; Zhang, L.; Li, X.; Li, C. L.; Zhang, R. J.; Zhang, Y. J.; Zhu, H. W. Sponge-like nickel phosphide-carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Res. 2017, 10, 415–425.

    Article  CAS  Google Scholar 

  38. Gao, P. P.; Sun, M.; Wu, X. B.; Zhou, S. Z.; Deng, X. T.; **e, Z. Y.; **ao, L.; Jiang, L. H.; Huan, Q. Z. (B,N)-doped 3D porous graphene-CNTs synthesized by chemical vapor deposition as a bifunctional catalyst for ORR and HER. RSC Adv. 2018, 8, 26934–26937.

    Article  CAS  Google Scholar 

  39. Kim, J. K.; Park, G. D.; Kim, J. H.; Park, S. K.; Kang, Y. C. Rational design and synthesis of extremely efficient macroporous CoSe2-CNT composite microspheres for hydrogen evolution reaction. Small 2017, 13, 1700068.

    Article  Google Scholar 

  40. Zheng, Q. M.; Durkin, D. P.; Elenewski, J. E.; Sun, Y. X.; Banek, N. A.; Hua, L. K.; Chen, H. N.; Wagner, M. J.; Zhang, W.; Shuai, D. M. Visible-light-responsive graphitic carbon nitride: Rational design and photocatalytic applications for water treatment. Environ. Sci. Technol. 2016, 50, 12938–12948.

    Article  CAS  Google Scholar 

  41. Sun, S. D.; Li, J.; Cui, J.; Gou, X. F.; Yang, Q.; Jiang, Y. H.; Liang, S. H.; Yang, Z. M. Simultaneously engineering K-do** and exfoliation into graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2019, 44, 778–787.

    Article  CAS  Google Scholar 

  42. Mamba, G.; Mishra, A. K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B: Environ. 2016, 198, 347–377.

    Article  CAS  Google Scholar 

  43. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

    Article  CAS  Google Scholar 

  44. Li, P. Y.; Liu, L.; An, W. J.; Wang, H.; Guo, H. X.; Liang, Y. H.; Cui, W. Q. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C-C coupling photothermal catalytic reduction of CO2 to ethanol. Appl. Catal. B: Environ. 2020, 266, 118618.

    Article  CAS  Google Scholar 

  45. Mohamed, N. A.; Safaei, J.; Ismail, A. F.; Jailani, M. F. A. M.; Khalid, M. N.; Noh, M. F. M.; Aadenan, A.; Nasir, S. N. S.; Sagu, J. S.; Teridi, M. A. M. The influences of post-annealing temperatures on fabrication graphitic carbon nitride, (g-C3N4) thin film. Appl. Surf. Sci. 2019, 489, 92–100.

    Article  CAS  Google Scholar 

  46. Sano, T.; Sato, H.; Hori, T.; Hirakawa, T.; Teramoto, Y.; Koike, K. Effects of polymeric- and electronic-structure of graphitic carbon nitride (g-C3N4) on oxidative photocatalysis. Mol. Catal. 2019, 474, 110451.

    Article  CAS  Google Scholar 

  47. Katsumata, K. I.; Motoyoshi, R.; Matsushita, N.; Okada, K. Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J. Hazard. Mater. 2013, 260, 475–482.

    Article  CAS  Google Scholar 

  48. Yu, X. A.; Ng, S. F.; Putri, L. K.; Tan, L. L.; Mohamed, A. R.; Ong, W. J. Point-defect engineering: Leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis. Small 2021, 17, 2006851.

    Article  CAS  Google Scholar 

  49. Li, K. X.; Zeng, Z. X.; Yan, L. S.; Luo, S. L.; Luo, X. B.; Huo, M. X.; Guo, Y. H. Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity. Appl. Catal. B: Environ. 2015, 165, 428–437.

    Article  CAS  Google Scholar 

  50. Jeong, T.; Piao, H. Y.; Park, S.; Yang, J. H.; Choi, G.; Wu, Q. K.; Kang, H.; Woo, H. J.; Jung, S. J.; Kim, H. et al. Atomic and electronic structures of graphene-decorated graphitic carbon nitride (g-C3N4) as a metal-free photocatalyst under visible-light. Appl. Catal. B: Environ. 2019, 256, 117850.

    Article  CAS  Google Scholar 

  51. Huang, Y. B.; Liu, J.; Zhao, C.; Jia, X. H.; Ma, M. M.; Qian, Y. Y.; Yang, C.; Liu, K.; Tan, F. R.; Wang, Z. J. et al. Facile synthesis of defect-modified thin-layered and porous g-C3N4 with synergetic improvement for photocatalytic H2 production. ACS Appl. Mater. Interfaces 2020, 12, 52603–52614.

    Article  CAS  Google Scholar 

  52. Zhou, Y.; Lv, W. H.; Zhu, B. L.; Tong, F.; Pan, J. L.; Bai, J. R.; Zhou, Q. F.; Qin, H. F. Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-do** for remarkable visible-light-driven hydrogen evolution. ACS Sustainable Chem. Eng. 2019, 7, 5801–5807.

    Article  CAS  Google Scholar 

  53. Ai, M. H.; Zhang, J. W.; Gao, R. J.; Pan, L.; Zhang, X. W.; Zou, J. J. MnOx-decorated 3D porous C3N4 with internal donor-acceptor motifs for efficient photocatalytic hydrogen production. Appl. Catal. B: Environ. 2019, 256, 117805.

    Article  CAS  Google Scholar 

  54. Li, H.; Li, L. B.; Lin, R. B.; Zhou, W.; Zhang, Z. J.; **ang, S. C.; Chen, B. L. Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem 2019, 1, 100006.

    Article  Google Scholar 

  55. Tavakoli, E.; Kakekhani, A.; Kaviani, S.; Tan, P.; Ghaleni, M. M.; Zaeem, M. A.; Rappe, A. M.; Nejati, S. In situ bottom-up synthesis of porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 19560–19564.

    Article  CAS  Google Scholar 

  56. Wang, J. Y.; Si, L. P.; Wei, Q.; Hong, X. J.; Lin, L. G.; Li, X.; Chen, J. Y.; Wen, P. B.; Cai, Y. P. An imine-linked covalent organic framework as the host material for sulfur loading in lithium-sulfur batteries. J. Energy Chem. 2019, 28, 54–60.

    Article  Google Scholar 

  57. Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

    Article  CAS  Google Scholar 

  58. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

    Article  CAS  Google Scholar 

  59. Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

    Article  Google Scholar 

  60. Wu, M. X.; Yang, Y. W. Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery. Chin. Chem. Lett. 2017, 28, 1135–1143.

    Article  CAS  Google Scholar 

  61. Haug, W. K.; Moscarello, E. M.; Wolfson, E. R.; McGrier, P. L. The luminescent and photophysical properties of covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 839–864.

    Article  CAS  Google Scholar 

  62. Gao, Z. Z.; Wang, Z. K.; Wei, L.; Yin, G. Q.; Tian, J.; Liu, C. Z.; Wang, H.; Zhang, D. W.; Zhang, Y. B.; Li, X. P. et al. Water-soluble 3D covalent organic framework that displays an enhanced enrichment effect of photosensitizers and catalysts for the reduction of protons to H2. ACS Appl. Mater. Interfaces 2020, 12, 1404–1411.

    Article  CAS  Google Scholar 

  63. Song, F. Z.; Zhu, Q. L.; Yang, X. C.; Zhan, W. W.; Pachfule, P.; Tsumori, N.; Xu, Q. Metal-organic framework templated porous carbon-metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid. Adv. Energy Mater. 2017, 8, 1701416.

    Article  Google Scholar 

  64. Li, H.; Sun, Y.; Yuan, Z. Y.; Zhu, Y. P.; Ma, T. Y. Titanium phosphonate based metal-organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 3222–3227.

    Article  CAS  Google Scholar 

  65. Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

    Article  CAS  Google Scholar 

  66. Meng, W. X.; Liu, X. J.; Song, H. Q.; **e, Y.; Shi, X. L.; Dargusch, M.; Chen, Z. G.; Tang, Z. Y.; Lu, S. Y. Advances and challenges in 2D MXenes: From structures to energy storage and conversions. Nano Today 2021, 40, 101273.

    Article  CAS  Google Scholar 

  67. Guo, Z. L.; Li, Y.; Sa, B. S.; Fang, Y.; Lin, J.; Huang, Y.; Tang, C. C.; Zhou, J.; Miao, N. H.; Sun, Z. M. M2C-type MXenes: Promising catalysts for CO2 capture and reduction. Appl. Surf. Sci. 2020, 521, 146436.

    Article  CAS  Google Scholar 

  68. Yan, B. B.; Bao, X. M.; Liao, X. T.; Wang, P.; Zhou, M.; Yu, Y. Y.; Yuan, J. G.; Cui, L.; Wang, Q. Sensitive micro-breathing sensing and highly-effective photothermal antibacterial Cinnamomum camphora bark micro-structural cotton fabric via electrostatic self-assembly of MXene/HACC. ACS Appl. Mater. Interfaces 2022, 14, 2132–2145.

    Article  CAS  Google Scholar 

  69. Bu, F. X.; Zagho, M. M.; Ibrahim, Y.; Ma, B.; Elzatahry, A.; Zhao, D. Y. Porous MXenes: Synthesis, structures, and applications. Nano Today 2020, 30, 100803.

    Article  CAS  Google Scholar 

  70. Jiang, J. Z.; Bai, S. S.; Yang, M. Q.; Zou, J.; Li, N.; Peng, J. H.; Wang, H. T.; **ang, K.; Liu, S.; Zhai, T. Y. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core-shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 2022, 15, 5977–5986.

    Article  CAS  Google Scholar 

  71. Shen, B. F.; Huang, H. J.; Jiang, Y.; Xue, Y.; He, H. Y. 3D interweaving MXene-graphene network-confined Ni-Fe layered double hydroxide nanosheets for enhanced hydrogen evolution. Electrochim. Acta 2022, 407, 139913.

    Article  CAS  Google Scholar 

  72. Lv, Z. P.; Ma, W. S.; Wang, M.; Dang, J.; Jian, K. L.; Liu, D.; Huang, D. J. Co-constructing interfaces of multiheterostructure on MXene (Ti3C2Tx)-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media. Adv. Funct. Mater. 2021, 31, 2102576.

    Article  CAS  Google Scholar 

  73. Kong, A. Q.; Peng, M.; Gu, H. Z.; Zhao, S. C.; Lv, Y.; Liu, M. H.; Sun, Y. W.; Dai, S. D.; Fu, Y.; Zhang, J. L. et al. Synergetic control of Ru/MXene 3D electrode with superhydrophilicity and superaerophobicity for overall water splitting. Chem. Eng. J. 2021, 426, 131234.

    Article  CAS  Google Scholar 

  74. Liu, X. G.; Zhang, S.; Wen, X.; Chen, X. C.; Wen, Y. L.; Shi, X. Z.; Mijowska, E. High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage. Sci. Rep. 2020, 10, 3518.

    Article  CAS  Google Scholar 

  75. Lv, Y. K.; Gan, L. H.; Liu, M. X.; **ong, W.; Xu, Z. J.; Zhu, D. Z.; Wright, D. S. A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J. Power Sources 2012, 209, 152–157.

    Article  CAS  Google Scholar 

  76. Sha, T. Z.; Liu, J. J.; Sun, M. M.; Li, L.; Bai, J.; Hu, Z. Q.; Zhou, M. Green and low-cost synthesis of nitrogen-doped graphene-like mesoporous nanosheets from the biomass waste of okara for the amperometric detection of vitamin C in real samples. Talanta 2019, 200, 300–306.

    Article  CAS  Google Scholar 

  77. Guo, N. N.; Luo, W. X.; Guo, R. H.; Qiu, D. P.; Zhao, Z. B.; Wang, L. X.; Jia, D. Z.; Guo, J. X. Interconnected and hierarchical porous carbon derived from soybean root for ultrahigh rate supercapacitors. J. Alloys Compd. 2020, 834, 155115.

    Article  CAS  Google Scholar 

  78. Sathiskumar, C.; Ramakrishnan, S.; Vinothkannan, M.; Kim, A. R.; Karthikeyan, S.; Yoo, D. J. Nitrogen-doped porous carbon derived from biomass used as trifunctional electrocatalyst toward oxygen reduction, oxygen evolution and hydrogen evolution reactions. Nanomaterials 2020, 10, 76.

    Article  CAS  Google Scholar 

  79. Wang, N.; Bo, X. J.; Zhou, M. Laser conversion of biomass into porous carbon composite under ambient condition for pH-universal electrochemical hydrogen evolution reaction. J. Colloid Interface Sci. 2021, 604, 885–893.

    Article  CAS  Google Scholar 

  80. Cao, X. P.; Li, Z.; Chen, H.; Zhang, C. C.; Zhang, Y. T.; Gu, C. L.; Xu, X. Y.; Li, Q. Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reaction electrocatalysis and supercapacitor electrode. Int. J. Hydrogen Energy 2021, 46, 18887–18897.

    Article  CAS  Google Scholar 

  81. Zhu, S. S.; Wang, D. W. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1700841.

    Article  Google Scholar 

  82. Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S. C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B: Environ. 2019, 244, 1021–1064.

    Article  CAS  Google Scholar 

  83. Wang, C. L.; Liu, G. G.; Song, K.; Wang, X. Q.; Wang, H.; Zhao, N. Q.; He, F. Three-dimensional hierarchical porous carbon/graphitic carbon nitride composites for efficient photocatalytic hydrogen production. ChemCatChem 2019, 11, 6364–6371.

    Article  CAS  Google Scholar 

  84. Zhang, Z.; Lu, L.; Lv, Z. Z.; Chen, Y.; **, H. Y.; Hou, S. E.; Qiu, L. X.; Duan, L. M.; Liu, J. H.; Dai, K. Porous carbon nitride with defect mediated interfacial oxidation for improving visible light photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 232, 384–390.

    Article  CAS  Google Scholar 

  85. Huang, X. D.; Zhao, Y. F.; Ao, Z. M.; Wang, G. X. Micelle-template synthesis of nitrogen-doped mesoporous graphene as an efficient metal-free electrocatalyst for hydrogen production. Sci. Rep. 2014, 4, 7557.

    Article  CAS  Google Scholar 

  86. Wang, M.; Chen, L.; Sun, L. C. Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ. Sci. 2012, 5, 6763–6778.

    Article  CAS  Google Scholar 

  87. Liang, H. W.; Brüller, S.; Dong, R. H.; Zhang, J.; Feng, X. L.; Müllen, K. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 2015, 6, 7992.

    Article  CAS  Google Scholar 

  88. Han, A. L.; **, S.; Chen, H. L.; Ji, H. X.; Sun, Z. J.; Du, P. W. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: High performance for electrocatalytic hydrogen production from pH 0–14. J. Mater. Chem. A 2015, 3, 1941–1946.

    Article  CAS  Google Scholar 

  89. McAteer, D.; Gholamvand, Z.; McEvoy, N.; Harvey, A.; O’Malley, E.; Duesberg, G. S.; Coleman, J. N. Thickness dependence and percolation scaling of hydrogen production rate in MoS2 nanosheet and nanosheet-carbon nanotube composite catalytic electrodes. ACS Nano 2016, 10, 672–683.

    Article  CAS  Google Scholar 

  90. Saka, C. Phosphorus and oxygen doped carbon-based on Spirulina microalgae as efficient metal-free catalysts to obtain H2 from methanolysis of NaBH4. Int. J. Hydrogen Energy 2021, 46, 3753–3762.

    Article  CAS  Google Scholar 

  91. Brack, P.; Dann, S. E.; Wijayantha, K. G. U. Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions. Energy Sci. Eng. 2015, 3, 174–188.

    Article  CAS  Google Scholar 

  92. Ngene, P.; van den Berg, R.; Verkuijlen, M. H. W.; de Jong, K. P.; de Jongh, P. E. Reversibility of the hydrogen desorption from NaBH4 by confinement in nanoporous carbon. Energy Environ. Sci. 2011, 4, 4108–4115.

    Article  CAS  Google Scholar 

  93. Qi, J.; Benipal, N.; Liang, C. H.; Li, W. Z. PdAg/CNT catalyzed alcohol oxidation reaction for high-performance anion exchange membrane direct alcohol fuel cell (alcohol = methanol, ethanol, ethylene glycol and glycerol). Appl. Catal. B: Environ. 2016, 199, 494–503.

    Article  CAS  Google Scholar 

  94. Demirci, S.; Yildiz, M.; Inger, E.; Sahiner, N. Porous carbon particles as metal-free superior catalyst for hydrogen release from methanolysis of sodium borohydride. Renewable Energy 2020, 147, 69–76.

    Article  CAS  Google Scholar 

  95. Zhang, D. M.; Wang, G. L.; Cheng, K.; Huang, J. C.; Yan, P.; Cao, D. X. Enhancement of electrocatalytic performance of hydrogen storage alloys by multi-walled carbon nanotubes for sodium borohydride oxidation. J. Power Sources 2014, 245, 482–486.

    Article  CAS  Google Scholar 

  96. Yang, J. Q.; Liu, B. H.; Wu, S. Carbon-supported Pd catalysts: Influences of nanostructure on their catalytic performances for borohydride electrochemical oxidation. J. Power Sources 2009, 194, 824–829.

    Article  CAS  Google Scholar 

  97. Muradov, N.; Smith, F.; Huang, C. P.; T-Raissi, A. Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO2 emissions. Catal. Today 2006, 116, 281–288.

    Article  CAS  Google Scholar 

  98. Zhang, J. B.; **, L. J.; Li, Y.; Si, H. H.; Qiu, B.; Hu, H. Q. Hierarchical porous carbon catalyst for simultaneous preparation of hydrogen and fibrous carbon by catalytic methane decomposition. Int. J. Hydrogen Energy 2013, 38, 8732–8740.

    Article  CAS  Google Scholar 

  99. Shen, Y.; Lua, A. C. A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition. J. Colloid Interface Sci. 2016, 462, 48–55.

    Article  CAS  Google Scholar 

  100. Zhang, Y. R.; Li, J. F.; Li, B. L.; Li, Z. S.; He, Y.; Qin, Z. H.; Gao, R. Y. Preparation of Ni-La/Al2O3-CeO2-bamboo charcoal catalyst and its application in co-pyrolysis of straw and plastic for hydrogen production. BioEnergy Res., in press, https://doi.org/10.1007/s12155-021-10359-0.

  101. Zhang, S. P.; Zhu, S. G.; Zhang, H. L.; Liu, X. Z.; **ong, Y. Q. High quality H2-rich syngas production from pyrolysis-gasification of biomass and plastic wastes by Ni-Fe@nanofibers/porous carbon catalyst. Int. J. Hydrogen Energy 2019, 44, 26193–26203.

    Article  CAS  Google Scholar 

  102. Widyawati, M.; Church, T. L.; Florin, N. H.; Harris, A. T. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. Int. J. Hydrogen Energy 2011, 36, 4800–4813.

    Article  CAS  Google Scholar 

  103. Yan, X. X.; Gu, M. Y.; Wang, Y.; Xu, L.; Tang, Y. W.; Wu, R. B. In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis. Nano Res. 2020, 13, 975–982.

    Article  CAS  Google Scholar 

  104. Sun, J. W.; Yang, S. R.; Liang, Z. Q.; Liu, X.; Qiu, P. Y.; Cui, H. Z.; Tian, J. Two-dimensional/one-dimensional molybdenum sulfide (MoS2) nanoflake/graphitic carbon nitride (g-C3N4) hollow nanotube photocatalyst for enhanced photocatalytic hydrogen production activity. J. Colloid Interface Sci. 2020, 567, 300–307.

    Article  CAS  Google Scholar 

  105. Liu, Y. L.; Eubank, J. F.; Cairns, A. J.; Eckert, J.; Kravtsov, V. C.; Luebke, R.; Eddaoudi, M. Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: A porous MOF with soc topology and high hydrogen storage. Angew. Chem. 2007, 119, 3342–3347.

    Article  Google Scholar 

  106. Ariza-Tarazona, M. C.; Villarreal-Chiu, J. F.; Hernández-López, J. M.; De la Rosa, J. R.; Barbieri, V.; Siligardi, C.; Cedillo-González, E. I. Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: Effect of pH and temperature in the photocatalytic degradation process. J. Hazard. Mater. 2020, 395, 122632.

    Article  CAS  Google Scholar 

  107. Yao, L.; Yang, H.; Chen, Z. S.; Qiu, M. Q.; Hu, B. W.; Wang, X. X. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 2021, 273, 128576.

    Article  CAS  Google Scholar 

  108. Zare, E. N.; Iftekhar, S.; Park, Y.; Joseph, J.; Srivastava, V.; Khan, M. A.; Makvandi, P.; Sillanpaa, M.; Varma, R. S. An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants. Chemosphere 2021, 280, 130907.

    Article  CAS  Google Scholar 

  109. Wang, Y. A.; Zheng, Y.; Han, C.; Chen, W. Surface charge transfer do** for two-dimensional semiconductor-based electronic and optoelectronic devices. Nano Res. 2021, 14, 1682–1697.

    Article  Google Scholar 

  110. Yan, J. Q.; Kong, L. Q.; Ji, Y. J.; White, J.; Li, Y. Y.; Zhang, J.; An, P. F.; Liu, S. Z.; Lee, S. T.; Ma, T. Y. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 2019, 10, 2149.

    Article  Google Scholar 

  111. Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; **ong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

    Article  CAS  Google Scholar 

  112. Zhu, P.; **ong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  113. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem. 2021, 133, 19233–19239.

    Article  Google Scholar 

  114. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  115. Wang, C. S.; Wang, H.; Wu, R. Q.; Ragan, R. Evaluating the stability of single-atom catalysts with high chemical activity. J. Phys. Chem. C 2018, 122, 21919–21926.

    Article  CAS  Google Scholar 

  116. **g, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  117. **ao, F.; Xu, G. L.; Sun, C. J.; Xu, M. J.; Wen, W.; Wang, Q.; Gu, M.; Zhu, S. Q.; Li, Y. Y.; Wei, Z. D. et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy 2019, 61, 60–68.

    Article  CAS  Google Scholar 

  118. Li, J.; Huang, H. L.; Liu, P.; Song, X. H.; Mei, D. H.; Tang, Y. Z.; Wang, X.; Zhong, C. L. Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution. J. Catal. 2019, 375, 351–360.

    Article  CAS  Google Scholar 

  119. Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

    Article  CAS  Google Scholar 

  120. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  121. Shi, R.; Tian, C. C.; Zhu, X.; Peng, C. Y.; Mei, B. B.; He, L.; Du, X. L.; Jiang, Z.; Chen, Y.; Dai, S. Achieving an exceptionally high loading of isolated cobalt single atoms on a porous carbon matrix for efficient visible-light-driven photocatalytic hydrogen production. Chem. Sci. 2019, 10, 2585–2591.

    Article  CAS  Google Scholar 

  122. Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

    Article  CAS  Google Scholar 

  123. Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 2018, 115, 12692–12697.

    Article  CAS  Google Scholar 

  124. Zbair, M.; Ahsaine, H. A.; Anfar, Z. Porous carbon by microwave assisted pyrolysis: An effective and low-cost adsorbent for sulfamethoxazole adsorption and optimization using response surface methodology. J. Clean. Prod. 2018, 202, 571–581.

    Article  CAS  Google Scholar 

  125. Liu, Y.; Pan, L. K.; Chen, T. Q.; Xu, X. T.; Lu, T.; Sun, Z.; Chua, D. H. C. Porous carbon spheres via microwave-assisted synthesis for capacitive deionization. Electrochim. Acta 2015, 151, 489–496.

    Article  CAS  Google Scholar 

  126. Seza, A.; Soleimani, F.; Naseri, N.; Soltaninejad, M.; Montazeri, S. M.; Sadrnezhaad, S. K.; Mohammadi, M. R.; Moghadam, H. A.; Forouzandeh, M.; Amin, M. H. Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar watersplitting. Appl. Surf. Sci. 2018, 440, 153–161.

    Article  CAS  Google Scholar 

  127. Sahoo, R. K.; Yun, J. M.; Kim, K. H. Bifunctional microwave-assisted molybdenum-complex carbon sponge production for supercapacitor and water-splitting applications. ACS Appl. Mater. Interfaces 2021, 13, 60966–60977.

    Article  CAS  Google Scholar 

  128. Jung, D. S.; Hwang, T. H.; Lee, J. H.; Koo, H. Y.; Shakoor, R. A.; Kahraman, R.; Jo, Y. N.; Park, M. S.; Choi, J. W. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium-sulfur battery. Nano Lett. 2014, 14, 4418–4425.

    Article  CAS  Google Scholar 

  129. Skrabalak, S. E.; Suslick, K. S. Porous carbon powders prepared by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 2006, 128, 12642–12643.

    Article  CAS  Google Scholar 

  130. Ye, Z. F.; Yang, J.; Li, B.; Shi, L.; Ji, H. X.; Song, L.; Xu, H. X. Amorphous molybdenum sulfide/carbon nanotubes hybrid nanospheres prepared by ultrasonic spray pyrolysis for electrocatalytic hydrogen evolution. Small 2017, 13, 1700111.

    Article  Google Scholar 

  131. Kim, J. K.; Park, S. K.; Kang, Y. C. Structure-optimized CoP-carbon nanotube composite microspheres synthesized by spray pyrolysis for hydrogen evolution reaction. J. Alloys Compd. 2018, 763, 652–661.

    Article  CAS  Google Scholar 

  132. Wang, B.; Chen, Y. F.; Wang, X. Q.; Zhang, X. J.; Hu, Y.; Yu, B.; Yang, D. X.; Zhang, W. L. A microwave-assisted bubble bursting strategy to grow Co8FeS8/CoS heterostructure on rearranged carbon nanotubes as efficient electrocatalyst for oxygen evolution reaction. J. Power Sources 2020, 449, 227561.

    Article  CAS  Google Scholar 

  133. Zheng, W.; Zhang, P. G.; Chen, J.; Tian, W. B.; Zhang, Y. M.; Sun, Z. M. Microwave-assisted synthesis of three-dimensional MXene derived metal oxide/carbon nanotube/iron hybrids for enhanced lithium-ions storage. J. Electroanal. Chem. 2019, 835, 205–211.

    Article  CAS  Google Scholar 

  134. Li, W.; Wang, X.; Li, M.; He, S. A.; Ma, Q.; Wang, X. C. Construction of Z-scheme and p-n heterostructure: Three-dimensional porous g-C3N4/graphene oxide-Ag/AgBr composite for high-efficient hydrogen evolution. Appl. Catal. B: Environ. 2020, 268, 118384.

    Article  CAS  Google Scholar 

  135. Cheng, W.; Di, H. F.; Shi, Z.; Zhang, D. Synthesis of ZnS/CoS/CoS2@N-doped carbon nanoparticles derived from metal-organic frameworks via spray pyrolysis as anode for lithium-ion battery. J. Alloys Compd. 2020, 831, 154607.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62004143), the Central Government Guided Local Science and Technology Development Special Fund Project (No. 2020ZYYD033), the Opening Fund of Key Laboratory for Green Chemical Process of Ministry of Education of Wuhan Institute of Technology (No. GCP202101), and the Natural Science Fund of Hubei Province (No. 2021CFB133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jizhou Jiang, Wei Sun or Jyh-** Hsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Jiang, J., Wang, J. et al. Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production. Nano Res. 16, 127–145 (2023). https://doi.org/10.1007/s12274-022-4799-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4799-z

Keywords

Navigation