Log in

Fabrication of monodispersed B, N co-doped hierarchical porous carbon nanocages through confined etching to boost electrocatalytic oxygen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Dual heteroatom-doped carbons have attracted widespread research attention as catalysts in the field of energy storage and conversion due to their unique electronic structures and chemical tunability. In particular, boron and nitrogen co-doped carbon (B,N@C) has shown great potential for photo/electrocatalytic applications. However, more needs to be done for rational designing and regulating the structure of these materials to improve their catalytic performance. Herein, monodispersed hierarchical porous B,N@C nanocages were fabricated by pyrolyzing zeolite imidazole framework (ZIF) which was treated with ammonia borane or boric acid via an integrated double-solvent impregnation and nanocofined-etching method. The treated ZIF-8 provided an essential structural template to achieve B, N co-doped hierarchical structures with micro/meso/macro multimodal pore size distributions. The resultant B,N@C nanocages displayed high catalytic activities for electrochemical oxygen reduction reaction (ORR) in alkaline media, outperforming most carbon-based catalysts, particularly from the perspective of the half-wave potentials. Such high catalytic performance is due to the enhanced activity by the coexistence of B and N and the mass transfer promoted by the unique hierarchical porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. B.; Hu, J. B.; Krishna, R.; Wang, L. Y.; Yang, L. F.; Cui, X. L.; Duttwyler, S; **ng, H. B. Rational design of microporous MOFs with anionic boron cluster functionality and cooperative dihydrogen binding sites for highly selective capture of acetylene. Angew. Chem., Int. Ed. 2020, 59, 17664–17669.

    Article  CAS  Google Scholar 

  2. Sun, L. M.; Yuan, Y. S.; Wang, F.; Zhao, Y. L.; Zhan, W. W.; Han, X. G. Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution. Nano Energy 2020, 74, 104909.

    Article  CAS  Google Scholar 

  3. **e, X. C.; Huang, K. J.; Wu, X. Metal-organic framework derived hollow materials for electrochemical energy storage. J. Mater. Chem. A 2018, 6, 6754–6771.

    Article  CAS  Google Scholar 

  4. Liu, J. L.; Zhu, D. D.; Guo, C. X.; Vasileff, A.; Qiao, S. Z. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 2017, 7, 1700518.

    Article  Google Scholar 

  5. Wang, C. H.; Kim, J.; Tang, J.; Kim, M.; Lim, H.; Malgras, V.; You, J.; Xu, Q.; Li, J. S.; Yamauchi, Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 2020, 6, 19–40.

    Article  CAS  Google Scholar 

  6. Song, X. K.; Jiang, Y.; Cheng, F.; Earnshaw, J.; Na, J.; Li, X. P.; Yamauchi, Y. Hollow carbon-based nanoarchitectures based on ZIF: Inward/outward contraction mechanism and beyond. Small 2021, 17, 2004142.

    Article  CAS  Google Scholar 

  7. Zhang, K. L.; Hu, H. J.; Shi, L. T.; Jia, B. H.; Huang, H. W.; Han, X. P.; Sun, X. D.; Ma, T. Y. Strategies for optimizing the photocatalytic water-splitting performance of metal-organic framework-based materials. Small Sci. 2021, 1, 2100060.

    Article  CAS  Google Scholar 

  8. Wang, K. D.; Wu, C.; Wang, F.; Jiang, G. Q. MOF-derived CoPx nanoparticles embedded in nitrogen-doped porous carbon polyhedrons for nanomolar sensing of p-nitrophenol. ACS Appl. Nano Mater. 2018, 1, 5843–5853.

    Article  CAS  Google Scholar 

  9. Pan, F. P.; Zhang, H. G.; Liu, K. X.; Cullen, D.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G. F.; Wu, G.; Li, Y. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 2018, 8, 3116–3122.

    Article  CAS  Google Scholar 

  10. **a, W.; Zhu, J. H.; Guo, W. H.; An, L.; **a, D. G.; Zou, R. Q. Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606–11613.

    Article  CAS  Google Scholar 

  11. Cai, Z. X.; Wang, Z. L.; **a, Y. J.; Lim, H.; Zhou, W.; Taniguchi, A.; Ohtani, M.; Kobiro, K.; Fujita, T.; Yamauchi, Y. Tailored catalytic nanoframes from metal-organic frameworks by anisotropic surface modification and etching for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 4747–4755.

    Article  CAS  Google Scholar 

  12. Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; **ng, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient orr electrocatalyst. Adv. Mater. 2020, 32, 2004670.

    Article  CAS  Google Scholar 

  13. Fang, Y. X.; Wang, X. C. Metal-free boron-containing heterogeneous catalysts. Angew. Chem., Int. Ed. 2017, 56, 15506–15518.

    Article  CAS  Google Scholar 

  14. Li, Z. L.; Chen, Y. P.; Ma, T. Y.; Jiang, Y. Z.; Chen, J.; Pan, H. G.; Sun, W. P. 2D metal-free nanomaterials beyond graphene and its analogues toward electrocatalysis applications. Adv. Energy Mater. 2021, 11, 2101202.

    Article  CAS  Google Scholar 

  15. Wu, J.; Zheng, X. J.; **, C.; Tian, J. H.; Yang, R. Z. Ternary do** of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction. Carbon 2015, 92, 327–338.

    Article  CAS  Google Scholar 

  16. Zhao, S. Y.; Liu, J.; Li, C. X.; Ji, W. B.; Yang, M. M.; Huang, H.; Liu, Y.; Kang, Z. H. Tunable ternary (N, P, B)-doped porous nanocarbons and their catalytic properties for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 22297–22304.

    Article  CAS  Google Scholar 

  17. Huang, P. M.; Li, H. D.; Huang, X. Y.; Chen, D. Y. Multiheteroatom-doped porous carbon catalyst for oxygen reduction reaction prepared using 3D network of ZIF-8/polymeric nanofiber as a facile-do** template. ACS Appl. Mater. Interfaces 2017, 9, 21083–21088.

    Article  CAS  Google Scholar 

  18. Rao, C.; N. R.; Chhetri, M. Borocarbonitrides as metal-free catalysts for the hydrogen evolution reaction. Adv. Mater. 2019, 31, 1803668.

    Article  Google Scholar 

  19. Zheng, M. F.; Shi, J. L.; Yuan, T.; Wang, X. C. Metal-free dehydrogenation of N-heterocycles by ternary h-BCN nanosheets with visible light. Angew. Chem. 2018, 130, 5585–5589.

    Article  Google Scholar 

  20. Rao, C. N. R.; Gopalakrishnan, K. Borocarbonitrides, BxCyNz: Synthesis, characterization, and properties with potential applications. ACS Appl. Mater. Interfaces 2017, 9, 19478–19494.

    Article  CAS  Google Scholar 

  21. Wang, S. Y.; Iyyamperumal, E.; Roy, A.; Xue, Y. H.; Yu, D. S.; Dai, L. M. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by co-do** with boron and nitrogen. Angew. Chem., Int. Ed. 2011, 50, 11756–11760.

    Article  CAS  Google Scholar 

  22. Hao, Y. Z.; Wang, S. Z.; Shao, Y. L.; Wu, Y. Z.; Miao, S. D. High-energy density Li-ion capacitor with layered SnS2/reduced graphene oxide anode and BCN nanosheet cathode. Adv. Energy Mater. 2020, 10, 1902836.

    Article  CAS  Google Scholar 

  23. Lei, W. W.; Qin, S.; Liu, D.; Portehault, D.; Liu, Z. W.; Chen, Y. Large scale boron carbon nitride nanosheets with enhanced lithium storage capabilities. Chem. Commun. 2013, 49, 352–354.

    Article  CAS  Google Scholar 

  24. Nandan, R.; Goswami, G. K.; Nanda, K. K. Direct synthesis of Pt-free catalyst on gas diffusion layer of fuel cell and usage of high boiling point fuels for efficient utilization of waste heat. Appl. Energy. 2017, 205, 1050–1058.

    Article  CAS  Google Scholar 

  25. Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Two-step boron and nitrogen do** in graphene for enhanced synergistic catalysis. Angew. Chem., Int. Ed. 2013, 52, 3110–3116.

    Article  CAS  Google Scholar 

  26. Wang, S. Y.; Zhang, L. P.; **a, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 51, 4209–4212.

    Article  CAS  Google Scholar 

  27. Chhetri, M.; Maitra, S.; Chakraborty, H.; Waghmare, U. V.; Rao, C.; N. R. Superior performance of borocarbonitrides, BxCyNz, as stable, low-cost metal-free electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2016, 9, 95–101.

    Article  CAS  Google Scholar 

  28. Zhang, H. W.; Li, Y. Y.; Huang, W. Q.; Zhou, B. X.; Ma, S. F.; Lu, Y. X.; Pan, A. L.; Huang, G. F. Hollow BCN microrods with hierarchical multichannel structure as a multifunctional material: Synergistic effects of structural topology and composition. Carbon 2019, 148, 231–240.

    Article  CAS  Google Scholar 

  29. Shi, D.; Chang, B.; Ai, Z. Z.; Jiang, H. H.; Chen, F. Z.; Shao, Y. L.; Shen, J. X.; Wu, Y. Z.; Hao, X. P. Boron carbonitride with tunable B/N lewis acid/base sites for enhanced electrocatalytic overall water splitting. Nanoscale 2021, 13, 2849–2854.

    Article  CAS  Google Scholar 

  30. Chen, C.; Yan, D. F.; Wang, Y.; Zhou, Y. Y.; Zou, Y. Q.; Li, Y. F.; Wang, S. Y. B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small 2019, 15, 1805029.

    Article  Google Scholar 

  31. Geng, Q. H.; Huang, G. X.; Liu, Y. B.; Li, Y. Y.; Liu, L. H.; Yang, X. H.; Wang, Q.; Zhang, C. X. Facile synthesis of B/N co-doped 2D porous carbon nanosheets derived from ammonium humate for supercapacitor electrodes. Electrochim. Acta 2019, 298, 1–13.

    Article  CAS  Google Scholar 

  32. Wang, S. Z.; Ma, F. K.; Jiang, H. H.; Shao, Y. L.; Wu, Y. Z.; Hao, X. P. Band gap-tunable porous borocarbonitride nanosheets for high energy-density supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 19588–19597.

    Article  CAS  Google Scholar 

  33. Liu, M. R.; Hong, Q. L.; Li, Q. H.; Du, Y. H.; Zhang, H. X.; Chen, S. M.; Zhou, T. H.; Zhang, J. Cobalt boron imidazolate framework derived cobalt nanoparticles encapsulated in B/N codoped nanocarbon as efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 2018, 28, 1801136.

    Article  Google Scholar 

  34. Qian, Y. H.; Hu, Z. G.; Ge, X. M.; Yang, S. L.; Peng, Y. W.; Kang, Z. X.; Liu, Z. L.; Lee, J. Y.; Zhao, D. A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017, 111, 641–650.

    Article  CAS  Google Scholar 

  35. Chen, X. D.; **e, Y. K.; Shao, Y. X.; Shen, K.; Li, Y. W. Facile synthesis of boron and nitrogen dual-doped hollow mesoporous carbons for efficient reduction of 4-nitrophenol. ACS Appl. Mater. Interfaces 2021, 13, 42598–42604.

    Article  CAS  Google Scholar 

  36. Van Nguyen, C.; Lee, S.; Chung, Y. G.; Chiang, W. H.; Wu, K. C. W. Synergistic effect of metal-organic framework-derived boron and nitrogen heteroatom-doped three-dimensional porous carbons for precious-metal-free catalytic reduction of nitroarenes. Appl. Catal. B Environ. 2019, 257, 117888.

    Article  CAS  Google Scholar 

  37. Li, Y. Q.; Xu, H. B.; Huang, H. Y.; Gao, L. G.; Zhao, Y. Y.; Ma, T. L. Synthesis of Co-B in porous carbon using a metal-organic framework (MOF) precursor: A highly efficient catalyst for the oxygen evolution reaction. Electrochem. Commun. 2018, 86, 140–144.

    Article  CAS  Google Scholar 

  38. Tabassum, H.; Mahmood, A.; Wang, Q. F.; **a, W.; Liang, Z. B.; Qiu, B.; Zhao, R.; Zou, R. Q. Hierarchical cobalt hydroxide and B/N co-doped graphene nanohybrids derived from metal-organic frameworks for high energy density asymmetric supercapacitors. Sci. Rep. 2017, 7, 43084.

    Article  Google Scholar 

  39. Tabassum, H.; Guo, W. H.; Meng, W.; Mahmood, A.; Zhao, R.; Wang, Q. F.; Zou, R. Q. Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv. Energy Mater. 2017, 7, 1601671.

    Article  Google Scholar 

  40. Zhang, H. B.; Ma, Z. J.; Duan, J. J.; Liu, H. M.; Liu, G. G.; Wang, T.; Chang, K.; Li, M.; Shi, L.; Meng, X. G. et al. Active sites implanted carbon cages in core-shell architecture: Highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 2016, 10, 684–694.

    Article  CAS  Google Scholar 

  41. Wei, X. D.; Li, N.; Zhang, X. M. Co/CoO/C@B three-phase composite derived from ZIF67 modified with NaBH4 solution as the electrocatalyst for efficient oxygen evolution. Electrochim. Acta 2018, 264, 36–45.

    Article  CAS  Google Scholar 

  42. Ahsan, M. A.; He, T. W.; Eid, K.; Abdullah, A. M.; Sanad, M. F.; Aldalbahi, A.; Alvarado-Tenorio, B.; Du, A. J.; Santiago, A. R. P.; Noveron, J. C. Controlling the interfacial charge polarization of MOF-derived 0D-2D vdW architectures as a unique strategy for bifunctional oxygen electrocatalysis. ACS Appl. Mater. Interfaces 2022, 14, 3919–3929.

    Article  CAS  Google Scholar 

  43. Wan, Y. T.; Zhang, W.; Han, X. L.; Zhou, L.; Zhen, H. J.; Wu, C. Z.; Yu, Q.; **u, G. L. B,N-decorated carbocatalyst based on Fe-MOF/BN as an efficient peroxymonosulfate activator for bisphenol A degradation. J. Hazard. Mater. 2022, 430, 127832.

    Article  CAS  Google Scholar 

  44. Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. Cao-templated growth of hierarchical porous graphene for highpower lithium-sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577–585.

    Article  CAS  Google Scholar 

  45. Tang, L.; Zhang, S. B.; Wu, Q. L.; Wang, X. R.; Wu, H.; Jiang, Z. Y. Heterobimetallic metal-organic framework nanocages as highly efficient catalysts for CO2 conversion under mild conditions. J. Mater. Chem. A 2018, 8, 2964–2973.

    Article  Google Scholar 

  46. Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889–10893.

    Article  CAS  Google Scholar 

  47. Hobday, C. L.; Woodall, C. H.; Lennox, M. J.; Frost, M.; Kamenev, K.; Düren, T.; Morrison, C. A.; Moggach, S. A. Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling. Nat. Commun. 2018, 9, 1429.

    Article  Google Scholar 

  48. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    Article  CAS  Google Scholar 

  49. Zhou, Y. H.; Cao, X. Y.; Ning, J. Z.; Ji, C. C.; Cheng, Y.; Gu, J. Pd-doped Cu nanoparticles confined by ZIF-67@ZIF-8 for efficient dehydrogenation of ammonia borane. Int. J. Hydrogen Energy 2020, 45, 31440–31451.

    Article  CAS  Google Scholar 

  50. Wang, Z. K.; Zhang, B. S.; Ye, C. L.; Chen, L. Y. Recovery of Au(III) from leach solutions using thiourea functionalized zeolitic imidazolate frameworks (TU*ZIF-8). Hydrometallurgy 2018, 180, 262–270.

    Article  CAS  Google Scholar 

  51. Chang, F. F.; Su, P. P.; Guharoy, U.; Ye, R. P.; Ma, Y. F.; Zheng, H. J.; Jia, Y.; Liu, J. Edge-enriched N, S co-doped hierarchical porous carbon for oxygen reduction reaction. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.04.060.

  52. Morabito, J. V.; Chou, L. Y.; Li, Z. H.; Manna, C. M.; Petroff, C. A.; Kyada, R. J.; Palomba, J. M.; Byers, J. A.; Tsung, C. K. Molecular encapsulation beyond the aperture size limit through dissociative linker exchange in metal-organic framework crystals. J. Am. Chem. Soc. 2014, 136, 12540–12543.

    Article  CAS  Google Scholar 

  53. Basu, O.; Mukhopadhyay, S.; De, A.; Das, A.; Das, S. K. Tuning the electrochemical and catalytic ORR performance of C60 by its encapsulation in ZIF-8: A solid-state analogue of dilute fullerene solution. Mater. Chem. Front. 2021, 5, 7654–7665.

    Article  CAS  Google Scholar 

  54. Gutiérrez, M.; Martín, C.; Van Der Auweraer, M.; Hofkens, J.; Tan, J. C. Electroluminescent guest@MOF nanoparticles for thin film optoelectronics and solid-state lighting. Adv. Opt. Mater. 2020, 8, 2000670.

    Article  Google Scholar 

  55. **a, Y.; Zhao, X. H.; **a, C.; Wu, Z. Y.; Zhu, P.; Kim, J. Y.; Bai, X. W.; Gao, G. H.; Hu, Y. F.; Zhong, J. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 2021, 12, 4225.

    Article  CAS  Google Scholar 

  56. Wang, J.; Li, H. G.; Liu, S. H.; Hu, Y. F.; Zhang, J.; **a, M. R.; Hou, Y. L.; Tse, J.; Zhang, J. J.; Zhao, Y. F. Turning on Zn 4s electrons in a N2-Zn-B2 configuration to stimulate remarkable ORR performance. Angew. Chem., Int. Ed. 2021, 60, 181–185.

    Article  CAS  Google Scholar 

  57. Ma, X. Y.; Du, J. J.; Sun, H.; Ye, F. H.; Wang, X.; Xu, P. F.; Hu, C. G.; Zhang, L. P.; Liu, D. Boron, nitrogen Co-doped carbon with abundant mesopores for efficient CO2 electroreduction. Appl. Catal. B Environ. 2021, 298, 120543.

    Article  CAS  Google Scholar 

  58. Chang, B.; Li, L. L.; Shi, D.; Jiang, H. H.; Ai, Z. Z.; Wang, S. Z.; Shao, Y. L.; Shen, J. X.; Wu, Y. Z.; Li, Y. L. et al. Metal-free boron carbonitride with tunable boron lewis acid sites for enhanced nitrogen electroreduction to ammonia. Appl. Catal. B Environ. 2021, 283, 119622.

    Article  CAS  Google Scholar 

  59. Ahsan, M. A.; He, T. W.; Eid, K.; Abdullah, A. M.; Curry, M. L.; Du, A. J.; Puente Santiago, A. R.; Echegoyen, L.; Noveron, J. C. Tuning the intermolecular electron transfer of low-dimensional and metal-free BCN/C60 electrocatalysts via interfacial defects for efficient hydrogen and oxygen electrochemistry. J. Am. Chem. Soc. 2021, 143, 1203–1215.

    Article  CAS  Google Scholar 

  60. Zhu, Q. L.; **a, W.; Akita, T.; Zou, R. Q.; Xu, Q. Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv. Mater. 2016, 28, 6391–6398.

    Article  CAS  Google Scholar 

  61. Zhu, Q. L.; **a, W.; Zheng, L. R.; Zou, R. Q.; Liu, Z.; Xu, Q. Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2017, 2, 504–511.

    Article  CAS  Google Scholar 

  62. Stephens, F. H.; Pons, V.; Baker, R. T. Ammonia-borane: The hydrogen source par excellence? Dalton Trans. 2007, 2613–2626.

  63. Brockman, A.; Zheng, Y.; Gore, J. A study of catalytic hydrolysis of concentrated ammonia borane solutions. Int. J. Hydrogen Energy 2010, 35, 7350–7356.

    Article  CAS  Google Scholar 

  64. Demirci, U. B. Ammonia borane, a material with exceptional properties for chemical hydrogen storage. Int. J. Hydrogen Energy 2017, 42, 9978–10013.

    Article  CAS  Google Scholar 

  65. Harabor, A.; Rotaru, P.; Scorei, R. I.; Harabor, N. A. Non-conventional hexagonal structure for boric acid. J. Therm. Anal. Calorim. 2014, 118, 1375–1384.

    Article  CAS  Google Scholar 

  66. Huang, C. M.; Mutailipu, M.; Zhang, F. F.; Griffith, K. J.; Hu, C.; Yang, Z. H.; Griffin, J. M.; Poeppelmeier, K. R.; Pan, S. L. Expanding the chemistry of borates with functional [BO2]− anions. Nat. Commun. 2021, 12, 2597.

    Article  CAS  Google Scholar 

  67. Kroeker, S.; Stebbins, J. F. Three-coordinated boron-11 chemical shifts in borates. Inorg. Chem. 2001, 40, 6239–6246.

    Article  CAS  Google Scholar 

  68. Geng, S. Y.; Shah, F. U.; Liu, P.; Antzutkin, O. N.; Oksman, K. Plasticizing and crosslinking effects of borate additives on the structure and properties of poly(vinyl acetate). RSC Adv. 2017, 7, 7483–7491.

    Article  CAS  Google Scholar 

  69. Li, Z. Y.; Zhu, G. S.; Lu, G. Q.; Qiu, S. L.; Yao, X. D. Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: Enhancing kinetics and eliminating ammonia. J. Am. Chem. Soc. 2010, 132, 1490–1491.

    Article  CAS  Google Scholar 

  70. Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.

    Article  CAS  Google Scholar 

  71. Wei, P.; Li, X. G.; He, Z. M.; Sun, X. P.; Liang, Q. R.; Wang, Z. Y.; Fang, C.; Li, Q.; Yang, H.; Han, J. T. et al. Porous N, B co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn-air batteries. Chem. Eng. J. 2021, 422, 130134.

    Article  CAS  Google Scholar 

  72. Li, Q. C.; Kolluru, V. S. C.; Rahn, M. S.; Schwenker, E.; Li, S. W.; Hennig, R. G.; Darancet, P.; Chan, M. K. Y.; Hersam, M. C. Synthesis of borophane polymorphs through hydrogenation of borophene. Science 2021, 371, 1143–1148.

    Article  CAS  Google Scholar 

  73. Majchrzak, D.; Grodzicki, M.; Moszak, K.; Zdanowicz, E.; Serafińczuk, J.; Pucicki, D.; Kudrawiec, R.; Hommel, D. Influence of pulsed Al deposition on quality of Al-rich Al(Ga)N structures grown by molecular beam epitaxy. Surf. Interfaces 2021, 27, 101560.

    Article  CAS  Google Scholar 

  74. Li, X. T.; Fan, L. L.; Xu, B.; Shang, Y. X.; Li, M. F.; Zhang, L.; Liu, S.; Kang, Z. X.; Liu, Z. N.; Lu, X. Q. et al. Single-atom-like B-N3 sites in ordered macroporous carbon for efficient oxygen reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 53892–53903.

    Article  CAS  Google Scholar 

  75. Gong, Y. J.; Fei, H. L.; Zou, X. L.; Zhou, W.; Yang, S. B.; Ye, G. L.; Liu, Z.; Peng, Z. W.; Lou, J.; Vajtai, R. et al. Boron- and nitrogen-substituted graphene nanoribbons as efficient catalysts for oxygen reduction reaction. Chem. Mater. 2015, 27, 1181–1186.

    Article  CAS  Google Scholar 

  76. Miao, H.; Li, S. H.; Wang, Z. H.; Sun, S. S.; Kuang, M.; Liu, Z. P.; Yuan, J. L. Enhancing the pyridinic N content of nitrogen-doped graphene and improving its catalytic activity for oxygen reduction reaction. Int. J. Hydrogen Energy 2017, 42, 28298–28308.

    Article  CAS  Google Scholar 

  77. Wu, J. J.; Ma, L. L.; Yadav, R. M.; Yang, Y. C.; Zhang, X.; Vajtai, R.; Lou, J.; Ajayan, P. M. Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction. ACS Appl. Mater. Interfaces 2015, 7, 14763–14769.

    Article  CAS  Google Scholar 

  78. Wang, T.; He, Y.; Liu, Y. J.; Guo, F. J.; Li, X. F.; Chen, H. B.; Li, H. M.; Lin, Z. Q. A ZIF-triggered rapid polymerization of dopamine renders Co/N-codoped cage-in-cage porous carbon for highly efficient oxygen reduction and evolution. Nano Energy 2021, 79, 105487.

    Article  CAS  Google Scholar 

  79. Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221.

    Article  CAS  Google Scholar 

  80. Li, L. J.; Dai, P. C.; Gu, X.; Wang, Y.; Yan, L. T.; Zhao, X. B. High oxygen reduction activity on a metal-organic framework derived carbon combined with high degree of graphitization and pyridinic-N dopants. J. Mater. Chem. A 2017, 5, 789–795.

    Article  CAS  Google Scholar 

  81. Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W. T.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 18971–18980.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support under the Australian Research Council’s Future Fellowship (No. FT190100658, Z.H.) and support from the Alexander von Humboldt Foundation (Z. H.). X. W. also acknowledges the Chinese Scholarship Council (CSC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenguo Huang or Jian Liu.

Electronic Supplementary Material

12274_2022_4786_MOESM1_ESM.pdf

Fabrication of monodispersed B, N co-doped hierarchical porous carbon nanocages through confined etching to boost electrocatalytic oxygen reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Han, C., Li, H. et al. Fabrication of monodispersed B, N co-doped hierarchical porous carbon nanocages through confined etching to boost electrocatalytic oxygen reduction. Nano Res. 16, 290–298 (2023). https://doi.org/10.1007/s12274-022-4786-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4786-4

Keywords

Navigation