Log in

Near-field and photocatalytic properties of mono- and bimetallic nanostructures monitored by nanocavity surface-enhanced Raman scattering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonances (LSPR) generated in a particle-film nanocavity enhance electric fields within a nanoscale volume. LSPR can also decay into hot carriers, highly energetic species that catalyze photocatalytic reactions in molecular analytes located in close proximity to metal surfaces. In this study, we examined the intensity of the electric field (near-field) and photocatalytic properties of plasmonic nanocavities formed by single nanoparticles (SNP) on single nanoplates (SNL). Using 4-nitrobenzenethiol (4-NBT) as a molecular reporter, we determined the near-field responses, as well as measured rates of 4-NBT dimerization into 4,4-dimercaptoazobenzene (DMAB) in the gold (Au) SNP on AuSNL nanocavity (Au-Au), as well as in AuSNP on AgSNL (Au-Ag), AgSNP on AuSNL (Ag-Au), and AgSNP on AgSNL (Ag-Ag) nanocavities using 532, 660, and 785 nm excitations. We observed the strongest near-field signals of 4-NBT at 660 nm in all examined plasmonic systems that is found to be substantially red-shifted relative to the LSPR of the corresponding nanoparticles. We also found that rates of DMAB formation were significantly greater in heterometal nanocavities (Au-Ag and Ag-Au) compared to their monometallic counterparts (Au-Au and Ag-Ag). These results point to drastic differences in plasmonic and photocatalytic properties of mono and bimetallic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harmsen, S.; Rogalla, S.; Huang, R. M.; Spaliviero, M.; Neuschmelting, V.; Hayakawa, Y.; Lee, Y.; Tailor, Y.; Toledo-Crow, R.; Kang, J. W. et al. Detection of premalignant gastrointestinal lesions using surface-enhanced resonance Raman scattering-nanoparticle endoscopy. ACS Nano 2019, 13, 1354–1364.

    CAS  Google Scholar 

  2. Dai, Q. F.; Ouyang, M.; Yuan, W. G.; Li, J. X.; Guo, B. H.; Lan, S.; Liu, S. H.; Zhang, Q. M.; Lu, G.; Tie, S. et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory. Adv. Mater. 2017, 29, 1701918.

    Article  Google Scholar 

  3. Ben-Shahar, Y.; Philbin, J. P.; Scotognella, F.; Ganzer, L.; Cerullo, G.; Rabani, E.; Banin, U. Charge carrier dynamics in photocatalytic hybrid semiconductor-metal nanorods: Crossover from auger recombination to charge transfer. Nano Lett. 2018, 18, 5211–5216.

    Article  CAS  Google Scholar 

  4. Li, Z. D.; Kurouski, D. Plasmon-driven chemistry on mono- and bimetallic nanostructures. Acc. Chem. Res. 2021, 54, 2477–2487.

    Article  CAS  Google Scholar 

  5. Ward, D. R.; Hüser, F.; Pauly, F.; Cuevas, J. C.; Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol. 2010, 5, 732–736.

    Article  CAS  Google Scholar 

  6. Cui, X. M.; Qin, F.; Lai, Y. H.; Wang, H.; Shao, L.; Chen, H. J.; Wang, J. F.; Lin, H. Q. Molecular tunnel junction-controlled highorder charge transfer plasmon and Fano resonances. ACS Nano 2018, 12, 12541–12550.

    Article  CAS  Google Scholar 

  7. Zhang, F. L.; Yi, J.; Peng, W.; Radjenovic, P. M.; Zhang, H.; Tian, Z. Q.; Li, J. F. Elucidating molecule—plasmon interactions in nanocavities with 2 nm spatial resolution and at the single-molecule level. Angew. Chem., Int. Ed. 2019, 58, 12133–12137.

    Article  CAS  Google Scholar 

  8. Li, C. Y.; Duan, S.; Yi, J.; Wang, C.; Radjenovic, P. M.; Tian, Z. Q.; Li, J. F. Real-time detection of single-molecule reaction by plasmon-enhanced spectroscopy. Sci. Adv. 2020, 6, eaba6012.

    Article  CAS  Google Scholar 

  9. Li, G. C.; Zhang, Q.; Maier, S. A.; Lei, D. Y. Plasmonic particle-on-film nanocavities: A versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics 2018, 7, 1865–1889.

    Article  CAS  Google Scholar 

  10. Lal, S.; Link, S.; Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photonics 2007, 1, 641–648.

    Article  CAS  Google Scholar 

  11. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247.

    Article  CAS  Google Scholar 

  12. Marimuthu, A.; Zhang, J.; Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 2013, 339, 1590–1593.

    Article  CAS  Google Scholar 

  13. Kazuma, E.; Jung, J.; Ueba, H.; Trenary, M.; Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 2018, 360, 521–526.

    Article  CAS  Google Scholar 

  14. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    Article  CAS  Google Scholar 

  15. Hartman, T.; Wondergem, C. S.; Kumar, N.; van den Berg, A.; Weckhuysen, B. M. Surface- and tip-enhanced Raman spectroscopy in catalysis. J. Phys. Chem. Lett. 2016, 7, 1570–1584.

    Article  CAS  Google Scholar 

  16. Sun, M. T.; Huang, Y. Z.; **a, L. X.; Chen, X. W.; Xu, H. X. The pH-controlled plasmon-assisted surface photocatalysis reaction of 4-aminothiophenol to p, p′-dimercaptoazobenzene on Au, Ag, and Cu colloids. J. Phys. Chem. C 2011, 115, 9629–9636.

    Article  CAS  Google Scholar 

  17. Lin, K. Q.; Yi, J.; Hu, S.; Liu, B. J.; Liu, J. Y.; Wang, X.; Ren, B. Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy. J. Phys. Chem. C 2016, 120, 20806–20813.

    Article  CAS  Google Scholar 

  18. Wilson, A. J.; Jain, P. K. Light-induced voltages in catalysis by plasmonic nanostructures. Acc. Chem. Res. 2020, 53, 1773–1781.

    Article  CAS  Google Scholar 

  19. Dong, B.; Fang, Y. R.; Chen, X. W.; Xu, H. X.; Sun, M. T. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p, p′-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 2011, 27, 10677–10682.

    Article  CAS  Google Scholar 

  20. Yu, S.; Wilson, A. J.; Heo, J.; Jain, P. K. Plasmonic control of multi-electron transfer and C—C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett. 2018, 18, 2189–2194.

    Article  CAS  Google Scholar 

  21. Schürmann, R.; Ebel, K.; Nicolas, C.; Milosavljević, A. R.; Bald, I. Role of valence band states and plasmonic enhancement in electron-transfer-induced transformation of nitrothiophenol. J. Phys. Chem. Lett. 2019, 10, 3153–3158.

    Article  Google Scholar 

  22. McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2005, 109, 11279–11285.

    Article  CAS  Google Scholar 

  23. Kurouski, D.; Large, N.; Chiang, N.; Greeneltch, N.; Carron, K. T.; Seideman, T.; Schatz, G. C.; Van Duyne, R. P. Unraveling near-field and far-field relationships for 3D SERS substrates—A combined experimental and theoretical analysis. Analyst 2016, 141, 1779–1788.

    Article  CAS  Google Scholar 

  24. Doherty, M. D.; Murphy, A.; McPhillips, J.; Pollard, R. J.; Dawson, P. Wavelength dependence of Raman enhancement from gold nanorod arrays: Quantitative experiment and modeling of a hot spot dominated system. J. Phys. Chem. C 2010, 114, 19913–19919.

    Article  CAS  Google Scholar 

  25. Kurouski, D.; Large, N.; Chiang, N.; Henry, A. I.; Seideman, T.; Schatz, G. C.; Van Duyne, R. P. Unraveling the near- and far-field relationship of 2D surface-enhanced Raman spectroscopy substrates using wavelength-scan surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. C 2017, 121, 14737–14744.

    Article  CAS  Google Scholar 

  26. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.

    Article  CAS  Google Scholar 

  27. Lee, P. C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395.

    Article  CAS  Google Scholar 

  28. Wang, R.; He, Z.; Sokolov, A. V.; Kurouski, D. Gap-mode tip-enhanced Raman scattering on Au nanoplates of varied thickness. J. Phys. Chem. Lett. 2020, 11, 3815–3820.

    Article  CAS  Google Scholar 

  29. Zeng, J.; **a, X. H.; Rycenga, M.; Henneghan, P.; Li, Q. G.; **a, Y. N. Successive deposition of silver on silver nanoplates: Lateral versus vertical growth. Angew. Chem., Int. Ed. 2011, 50, 244–249.

    Article  CAS  Google Scholar 

  30. Wustholz, K. L.; Henry, A. I.; McMahon, J. M.; Freeman, R. G.; Valley, N.; Piotti, M. E.; Natan, M. J.; Schatz, G. C.; Van Duyne, R. P. Structure—activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2010, 132, 10903–10910.

    Article  CAS  Google Scholar 

  31. Kleinman, S. L.; Sharma, B.; Blaber, M. G.; Henry, A. I.; Valley, N.; Freeman, R. G.; Natan, M. J.; Schatz, G. C.; Van Duyne, R. P. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J. Am. Chem. Soc. 2013, 135, 301–308.

    Article  CAS  Google Scholar 

  32. Benz, F.; Schmidt, M. K.; Dreismann, A.; Chikkaraddy, R.; Zhang, Y.; Demetriadou, A.; Carnegie, C.; Ohadi, H.; De Nijs, B.; Esteban, R. et al. Single-molecule optomechanics in “picocavities”. Science 2016, 354, 726–729.

    Article  CAS  Google Scholar 

  33. Du, W.; Wang, T.; Chu, H. S.; Wu, L.; Liu, R. R.; Sun, S.; Phua, W. K.; Wang, L. J.; Tomczak, N.; Nijhuis, C. A. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat. Photonics 2016, 10, 274–280.

    Article  CAS  Google Scholar 

  34. Zhang, C.; Li, D. Y.; Zhang, G. D.; Wang, X. J.; Mao, L.; Gan, Q.; Ding, T.; Xu, H. X. Switching plasmonic nanogaps between classical and quantum regimes with supramolecular interactions. Sci. Adv. 2022, 8, eabj9752.

    Article  CAS  Google Scholar 

  35. Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 1985, 31, 6207–6215.

    Article  Google Scholar 

  36. Evers, F.; Korytár, R.; Tewari, S.; van Ruitenbeek, J. M. Advances and challenges in single-molecule electron transport. Rev. Mod. Phys. 2020, 92, 035001.

    Article  CAS  Google Scholar 

  37. Holm, V. R. A.; Zheng, B. Y.; Denby, P. M.; Holst, B.; Halas, N. J.; Greve, M. M. Work function-driven hot electron extraction in a bimetallic plasmonic MIM device. ACS Photonics 2018, 5, 1202–1207.

    Article  CAS  Google Scholar 

  38. Adak, O.; Korytár, R.; Joe, A. Y.; Evers, F.; Venkataraman, L. Impact of electrode density of states on transport through pyridine-linked single molecule junctions. Nano Lett. 2015, 15, 3716–3722.

    Article  CAS  Google Scholar 

  39. Li, Z. D.; Rigor, J.; Large, N.; El-Khoury, P. Z.; Kurouski, D. Underlying mechanisms of hot carrier-driven reactivity on bimetallic nanostructures. J. Phys. Chem. C 2021, 125, 2492–2501.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to AgriLife Research of Texas A&M for the provided financial support. We also acknowledge Governor’s University Research Initiative (GURI) grant program of Texas A&M University, GURI Grant Agreement No. 12-2016, M1700437. R. W. acknowledges the financial support from the State Key Laboratory of Analytical Chemistry for Life Science, Nan**g University (No. SKLACLS2215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Kurouski.

Electronic Supplementary Material

12274_2022_4736_MOESM1_ESM.pdf

Near-field and photocatalytic properties of mono- and bimetallic nanostructures monitored by nanocavity surface-enhanced Raman scattering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., He, Z. & Kurouski, D. Near-field and photocatalytic properties of mono- and bimetallic nanostructures monitored by nanocavity surface-enhanced Raman scattering. Nano Res. 16, 1545–1551 (2023). https://doi.org/10.1007/s12274-022-4736-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4736-1

Keywords

Navigation