Log in

Electric field controlled superlubricity of fullerene-based host—guest assembly

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controlling friction by the electric field is a promising way to improve the tribological performance of a variety of movable mechanical systems. In this work, the assembly structure and microscale superlubricity of a host—guest assembly are effectively controlled by the electric field. With the help of the scanning tunneling microscopy (STM) technique, the host—guest assembly structures constructed by the co-assembly of fullerene derivative (Fluorene-C60) with macrocycles (4B2A and 3B2A) are explicitly characterized. Combined with density functional theory (DFT), the distinct different assembly behaviors of fullerene derivatives are revealed at different probe biases, which is attributed to the molecular polarity of the fullerene derivative. Through the control on the adsorption behavior, the friction coefficient of host—guest assembly is demonstrated to be controllable in the electric field by using atomic force microscopy (AFM). At positive probe bias, the friction coefficient of the host—guest assembly is significantly reduced and achieves superlubricity (μmin = 0.0049). The efforts not only help us gain insight into the host—guest assembly mechanism controlled by the electric field, but also promote the further application of fullerene in micro-electro-mechanical systems (MEMS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhushan, B.; Israelachvili, J. N.; Landman, U. Nanotribology: Friction, wear and lubrication at the atomic scale. Nature 1995, 374, 607–616.

    Article  CAS  Google Scholar 

  2. Meng, Y. G.; Xu, J.; **, Z. M.; Prakash, B.; Hu, Y. Z. A review of recent advances in tribology. Friction 2020, 8, 221–300.

    Article  Google Scholar 

  3. Hsu, S.; Ying, C.; Zhao, F. The nature of friction: A critical assessment. Friction 2014, 2, 1–26.

    Article  Google Scholar 

  4. Zimmermann, S.; Klauser, W.; Mead, J.; Wang, S. L.; Huang, H.; Fatikow, S. A laterally sensitive colloidal probe for accurately measuring nanoscale adhesion of textured surfaces. Nano Res. 2019, 12, 389–396.

    Article  CAS  Google Scholar 

  5. Liu, H. W.; Fujisawa, S.; Tanaka, A.; Enomoto, Y. Controlling and improving the microtribological properties of Langmuir—Blodgett monolayer films using an external electric field. Thin Solid Films 2000, 368, 151–155.

    Article  CAS  Google Scholar 

  6. Liu, L. C.; Zhou, M.; **, L.; Li, L. C.; Mo, Y. T.; Su, G. S.; Li, X.; Zhu, H. W.; Tian, Y. Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications. Friction 2019, 7, 199–216.

    Article  Google Scholar 

  7. Guo, W. L.; Yin, J.; Qiu, H.; Guo, Y. F.; Wu, H. R.; Xue, M. M. Friction of low-dimensional nanomaterial systems. Friction 2014, 2, 209–225.

    Article  CAS  Google Scholar 

  8. Ma, S. H.; Scaraggi, M.; Yan, C. Y.; Wang, X. L.; Gorb, S. N.; Dini, D.; Zhou, F. Bioinspired 3d printed locomotion devices based on anisotropic friction. Small 2019, 15, 1802931.

    Article  Google Scholar 

  9. Jiang, Y.; Yue, L. L.; Yan, B. S.; Liu, X.; Yang, X. F.; Tai, G. A.; Song, J. Electric control of friction on silicon studied by atomic force microscope. Nano 2015, 10, 1550038.

    Article  Google Scholar 

  10. Guerra, R.; Vanossi, A.; Urbakh, M. Controlling microscopic friction through mechanical oscillations. Phys. Rev. E 2008, 78, 036110.

    Article  CAS  Google Scholar 

  11. Machado, L. D.; Bizao, R. A.; Pugno, N. M.; Galvao, D. S. Controlling movement at nanoscale: Curvature driven mechanotaxis. Small 2021, 17, 2100909.

    Article  CAS  Google Scholar 

  12. Gao, Y. Y.; Liu, G. X.; Bu, T. Z.; Liu, Y. Y.; Qi, Y. C.; **e, Y. T.; Xu, S. H.; Deng, W. L.; Yang, W. Q.; Zhang, C. MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Res. 2021, 14, 4833–4840.

    Article  CAS  Google Scholar 

  13. Sweeney, J.; Hausen, F.; Hayes, R.; Webber, G. B.; Endres, F.; Rutland, M. W.; Bennewitz, R.; Atkin, R. Control of nanoscale friction on gold in an ionic liquid by a potential-dependent ionic lubricant layer. Phys. Rev. Lett. 2012, 109, 155502.

    Article  Google Scholar 

  14. Spear, J. C.; Ewers, B. W.; Batteas, J. D. 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today 2015, 10, 301–314.

    Article  CAS  Google Scholar 

  15. Socoliuc, A.; Gnecco, E.; Maier, S.; Pfeiffer, O.; Baratoff, A.; Bennewitz, R.; Meyer, E. Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 2006, 313, 207–210.

    Article  CAS  Google Scholar 

  16. An, R.; Qiu, X. H.; Shah, F. U.; Riehemann, K.; Fuchs, H. Controlling the nanoscale friction by layered ionic liquid films. Phys. Chem. Chem. Phys. 2020, 22, 14941–14952.

    Article  CAS  Google Scholar 

  17. Hu, J.; Pu, X. J.; Yang, H. M.; Zeng, Q. X.; Tang, Q.; Zhang, D. Z.; Hu, C. G.; **, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023.

    Article  Google Scholar 

  18. Kimura, Y.; Nakano, K.; Kato, T.; Morishita, S. Control of friction coefficient by applying electric fields across liquid crystal boundary films. Wear 1994, 175, 143–149.

    Article  CAS  Google Scholar 

  19. Gao, Y.; Xue, B. C.; Ma, L. R.; Luo, J. B. Effect of liquid crystal molecular orientation controlled by an electric field on friction. Tribol. Int. 2017, 115, 477–482.

    Article  CAS  Google Scholar 

  20. Park, J. Y.; Qi, Y. B.; Ashby, P. D.; Hendriksen, B. L. M.; Salmeron, M. Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy. J. Chem. Phys. 2009, 130, 114705.

    Article  Google Scholar 

  21. Meng, Y. G.; Jiang, H. J.; Wong, P. L. An experimental study on voltage-controlled friction of alumina/brass couples in zinc stearate/water suspension. Tribol. Trans. 2001, 44, 567–574.

    Article  CAS  Google Scholar 

  22. Drummond, C. Electric-field-induced friction reduction and control. Phys. Rev. Lett. 2012, 109, 154302.

    Article  Google Scholar 

  23. Sénéchal, V.; Saadaoui, H.; Rodriguez-Hernandez, J.; Drummond, C. Electro-responsive polyelectrolyte-coated surfaces. Faraday Discuss. 2017, 199, 335–347.

    Article  Google Scholar 

  24. Sénéchal, V.; Saadaoui, H.; Rodriguez-Hernandez, J.; Drummond, C. Electrowetting of weak polyelectrolyte-coated surfaces. Langmuir 2017, 33, 4996–5005.

    Article  Google Scholar 

  25. Qi, Y. B.; Park, J. Y.; Hendriksen, B. L. M.; Ogletree, D. F.; Salmeron, M. Electronic contribution to friction on GaAs: An atomic force microscope study. Phys. Rev. B 2008, 77, 184105.

    Article  Google Scholar 

  26. Park, J. Y.; Qi, Y. B.; Ogletree, D. F.; Thiel, P. A.; Salmeron, M. Influence of carrier density on the friction properties of silicon pn junctions. Phys. Rev. B 2007, 76, 064108.

    Article  Google Scholar 

  27. Park, J. Y.; Ogletree, D. F.; Thiel, P. A.; Salmeron, M. Electronic control of friction in silicon pn junctions. Science 2006, 313, 186.

    Article  CAS  Google Scholar 

  28. Park, J. Y.; Qi, Y. B. Probing nanotribological and electrical properties of organic molecular films with atomic force microscopy. Scanning 2010, 32, 257–264.

    Article  CAS  Google Scholar 

  29. Liu, L.; Zhang, Y.; Qiao, Y. J.; Tan, S. C.; Feng, S. F.; Ma, J.; Liu, Y. H.; Luo, J. B. 2D metal-organic frameworks with square grid structure: A promising new-generation superlubricating material. Nano Today 2021, 40, 101262.

    Article  CAS  Google Scholar 

  30. Wang, H. D.; Liu, Y. H. Superlubricity achieved with two-dimensional nano-additives to liquid lubricants. Friction 2020, 8, 1007–1024.

    Article  CAS  Google Scholar 

  31. Hod, O.; Meyer, E.; Zheng, Q. S.; Urbakh, M. Structural superlubricity and ultralow friction across the length scales. Nature 2018, 563, 485–492.

    Article  CAS  Google Scholar 

  32. Büch, H.; Rossi, A.; Forti, S.; Convertino, D.; Tozzini, V.; Coletti, C. Superlubricity of epitaxial monolayer WS2 on graphene. Nano Res. 2018, 11, 5946–5956.

    Article  Google Scholar 

  33. Wang, K. P.; Liu, L.; Song, A. S.; Ma, T. B.; Wang, H. D.; Luo, J. B.; Liu, Y. H. Macroscale superlubricity under ultrahigh contact pressure in the presence of layered double hydroxide nanosheets. Nano Res. 2022, 15, 4700–4709.

    Article  CAS  Google Scholar 

  34. Yoshimoto, S.; Amano, J.; Miura, K. Synthesis of a fullerene/expanded graphite composite and its lubricating properties. J. Mater. Sci. 2010, 45, 1955–1962.

    Article  CAS  Google Scholar 

  35. Sasaki, N.; Itamura, N.; Miura, K. Simulation of atomic-scale ultralow friction of graphite/C60/graphite interface along direction. Jpn. J. Appl. Phys. 2007, 46, L1237–L1239.

    Article  CAS  Google Scholar 

  36. Miura, K.; Tsuda, D.; Itamura, N.; Sasaki, N. Superlubricity of fullerene intercalated graphite composite. Jpn. J. Appl. Phys. 2007, 46, 5269–5274.

    Article  CAS  Google Scholar 

  37. Tan, S. C.; Shi, H. Y.; Fu, L. L.; Ma, J.; Du, X.; Song, J.; Liu, Y. H.; Zeng, Q. D.; Xu, H. J.; Wan, J. H. Superlubricity of fullerene derivatives induced by host—guest assembly. ACS Appl. Mater. Interfaces 2020, 12, 18924–18933.

    Article  CAS  Google Scholar 

  38. Zhang, S. Q.; Liu, Z. Y.; Fu, W. F.; Liu, F.; Wang, C. M.; Sheng, C. Q.; Wang, Y. F.; Deng, K.; Zeng, Q. D.; Shu, L. J. et al. Donor-acceptor conjugated macrocycles: Synthesis and host—guest coassembly with fullerene toward photovoltaic application. ACS Nano 2017, 11, 11701–11713.

    Article  CAS  Google Scholar 

  39. Shi, H. Y.; Lu, X. C.; Liu, Y. H.; Song, J.; Deng, K.; Zeng, Q. D.; Wang, C. Nanotribological study of supramolecular template networks induced by hydrogen bonds and van der Waals forces. ACS Nano 2018, 12, 8781–8790.

    Article  CAS  Google Scholar 

  40. Fowler, P. W. Fullerene graphs with more negative than positive eigenvalues: The exceptions that prove the rule of electron deficiency?. J. Chem. Soc., Faraday Trans. 1997, 93, 1–3.

    Article  CAS  Google Scholar 

  41. Bethune, D. S.; Johnson, R. D.; Salem, J. R.; De Vries, M. S.; Yannoni, C. S. Atoms in carbon cages: The structure and properties of endohedral fullerenes. Nature 1993, 366, 123–128.

    Article  CAS  Google Scholar 

  42. Miura, K.; Kamiya, S.; Sasaki, N. C60 molecular bearings. Phys. Rev. Lett. 2003, 90, 055509.

    Article  CAS  Google Scholar 

  43. Chang, S. Q.; Liu, R. C.; Wang, L. C.; Li, M.; Deng, K.; Zheng, Q. Y.; Zeng, Q. D. Formation of ordered coronene clusters in template utilizing the structural transformation of hexaphenylbenzene derivative networks on graphite surface. ACS Nano 2016, 10, 342–348.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2017YFA0205000), the National Natural Science Foundation of China (Nos. 51875303 and 21972031), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke Deng, Qingdao Zeng or Yuhong Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S., Shi, H., Du, X. et al. Electric field controlled superlubricity of fullerene-based host—guest assembly. Nano Res. 16, 583–588 (2023). https://doi.org/10.1007/s12274-022-4641-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4641-7

Keywords

Navigation