Log in

Hollow hydrangea-like nitrogen-doped NiO/Ni/carbon composites as lightweight and highly efficient electromagnetic wave absorbers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hierarchical hollow-structured magnetic—dielectric materials are considered to be promising and competitive functional absorbers for microwave absorption (MA). Herein, a hierarchical hollow hydrangea multicomponent metal oxides/metal-carbon was designed and successfully produced via a facile self-assembly method and calcination process. Adequate magnetic NiO and Ni nanoparticles were suspended within the hollow hydrangea-like nitrogen-doped carbon matrix (HH N-NiO/Ni/C), constructing a unique hierarchical hollow structured multicomponent magnetic—dielectric MA composite. The annealing temperature and oxidation time were carefully regulated to investigate the complex permittivity and permeability. HH N-NiO/Ni/C delivers exceptional MA properties with maximum reflection loss of −45.8 dB at 1.7 mm thickness and displays a wide effective absorption frequency range of 5.6 GHz. The superior MA performance can be attributed to the following aspects: (1) The hierarchical hollow multicomponent structure offers plentiful of heterojunction interfaces triggering interfacial polarization; (2) nitrogen doped-carbon (N-C) facilitates the conductive loss by the unique electron migration path in the graphitized C and NiO/Ni; (3) magnetic NiO/Ni nanoparticles homogeneously dispersed within N-C form extensive C skeleton and strengthen the magnetic response ability; (4) hierarchical hollow wrinkled structures possess a large interspace and heterogeneous interface improving polarization loss and enhancing multireflection process and the unique structure satisfies magnetic and dielectric loss simultaneously resulting from synergistic effects of different components within the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

    CAS  Google Scholar 

  2. Qiao, J.; Zhang, X.; Liu, C.; Lyu, L. F.; Yang, Y. F.; Wang, Z.; Wu, L. L.; Liu, W.; Wang, F. L.; Liu, J. R. Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 2021, 13, 75.

    Google Scholar 

  3. Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

    Google Scholar 

  4. Huang, X. G.; Qiao, M.; Lu, X. C.; Li, Y. F.; Ma, Y. B.; Kang, B.; Quan, B.; Ji, G. B. Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. 2021, 14, 4006–4013.

    CAS  Google Scholar 

  5. Gu, W. H.; Sheng, J. Q.; Huang, Q. Q.; Wang, G. H.; Chen, J. B.; Ji, G. B. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 2021, 13, 102.

    CAS  Google Scholar 

  6. Cheng, Y.; Seow, J. Z. Y.; Zhao, H. Q.; Xu, Z. J.; Ji, G. B. A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 2020, 12, 125.

    CAS  Google Scholar 

  7. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    CAS  Google Scholar 

  8. Xu, C. Y.; Wang, L.; Li, X.; Qian, X.; Wu, Z. C.; You, W. B.; Pei, K.; Qin, G.; Zeng, Q. W.; Yang, Z. Q. et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Namo-Micro Lett. 2021, 13, 47.

    Google Scholar 

  9. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

    CAS  Google Scholar 

  10. Yang, H. J.; Wang, X. P.; Wang, S. B.; Zhang, P. Y.; **ao, C.; Sari, H. M. K.; Liu, J. H.; Jia, J. C.; Cao, B.; Qin, J. et al. Double boosting single atom Fe-N4 sites for high efficiency O2 and CO2 electroreduction. Carbon 2021, 182, 109–116.

    CAS  Google Scholar 

  11. Zhang, Y. L.; Gu, J. W. A perspective for develo** polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

    Google Scholar 

  12. Du, Y. Z.; Wang, X. D.; Dai, X. Y.; Li, W. X.; Tang, Y. S.; Kong, J. Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2Tx MXene for self-powered wearable electronics. J. Mater. Sci. Tech. 2022, 100, 1–11.

    CAS  Google Scholar 

  13. Song, Y.; Yin, F. X.; Zhang, C. W.; Guo, W. B.; Han, L. Y.; Yuan, Y. Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 2021, 13, 76.

    Google Scholar 

  14. Liang, J.; Chen, J.; Shen, H. Q.; Hu, K. T.; Zhao, B. N.; Kong, J. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 2021, 33, 1789–1798.

    CAS  Google Scholar 

  15. Wang, J. Q.; Wu, F.; Cui, Y. H.; Zhang, A. B.; Zhang, Q. Y.; Zhang, B. L. Efficient synthesis of N-doped porous carbon nanoribbon composites with selective microwave absorption performance in common wavebands. Carbon 2021, 175, 164–175.

    CAS  Google Scholar 

  16. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

    CAS  Google Scholar 

  17. Wang, L.; Huang, M. Q.; Qian, X.; Liu, L. L.; You, W. B.; Zhang, J.; Wang, M.; Che, R. C. Confined magnetic-dielectric balance boosted electromagnetic wave absorption. Small 2021, 17, 2100970.

    CAS  Google Scholar 

  18. Deng, B. W.; **ang, Z.; **ong, J.; Liu, Z. C.; Yu, L. Z.; Lu, W. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 2020, 12, 55.

    CAS  Google Scholar 

  19. Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

    CAS  Google Scholar 

  20. Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

    CAS  Google Scholar 

  21. Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 2021, 14, 1495–1501.

    CAS  Google Scholar 

  22. Liang, J.; Hu, H.; Park, H.; **ao, C. H.; Ding, S. J.; Paik, U.; Lou, X. W. Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ. Sci. 2015, 8, 1707–1711.

    CAS  Google Scholar 

  23. Calles, J. A.; Carrero, A.; Vizcaíno, A. J.; Lindo, M. Effect of Ce and Zr addition to Ni/SiO2 catalysts for hydrogen production through ethanol steam reforming. Catalysts 2015, 5, 58–76.

    Google Scholar 

  24. Zou, X.; Sun, Q.; Zhang, Y. X.; Li, G. D.; Liu, Y. P.; Wu, Y. Y.; Yang, L.; Zou, X. X. Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors. Sci. Rep. 2018, 8, 4478.

    Google Scholar 

  25. Qian, R. F.; Zong, H. X.; Schneider, J.; Zhou, G. D.; Zhao, T.; Li, Y. L.; Yang, J.; Bahnemann, D. W.; Pan, J. H. Charge carrier trap**, recombination and transfer during TiO2 photocatalysis: An overview. Catal. Today 2019, 335, 78–90.

    CAS  Google Scholar 

  26. Shu, J. C.; Huang, X. Y.; Cao, M. S. Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption. Carbon 2021, 174, 638–646.

    CAS  Google Scholar 

  27. Zhang, Z. Z.; Jia, B. R.; Liu, L.; Zhao, Y. Z.; Wu, H. Y.; Qin, M. L.; Han, K.; Wang, W. A.; **, K.; Zhang, L. et al. Hollow multihole carbon bowls: A stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 2019, 13, 11363–11371.

    CAS  Google Scholar 

  28. Li, J. Y.; Li, X. H.; Zhao, P. H.; Lei, D. Y.; Li, W. L.; Bai, J. T.; Ren, Z. Y.; Xu, X. L. Searching for magnetism in pyrrolic N-doped graphene synthesized via hydrothermal reaction. Carbon 2015, 84, 460–468.

    CAS  Google Scholar 

  29. Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

    CAS  Google Scholar 

  30. Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; **a, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

    CAS  Google Scholar 

  31. Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; **a, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

    CAS  Google Scholar 

  32. Moitra, D.; Dhole, S.; Ghosh, B. K.; Chandel, M.; Jani, R. K.; Patra, M. K.; Vadera, S. R.; Ghosh, N. N. Synthesis and microwave absorption properties of BiFeO3 nanowire-RGO nanocomposite and first-principles calculations for insight of electromagnetic properties and electronic structures. J. Phys. Chem. C 2017, 121, 21290–21304.

    CAS  Google Scholar 

  33. Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

    CAS  Google Scholar 

  34. Cui, X. Q.; Liang, X. H.; Liu, W.; Gu, W. H.; Ji, G. B.; Du, Y. W. Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C. Chem. Eng. J. 2020, 381, 122589.

    CAS  Google Scholar 

  35. Lan, D.; Gao, Z. G.; Zhao, Z. H.; Wu, G. L.; Kou, K. C.; Wu, H. J. Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chem. Eng. J. 2021, 408, 127313.

    CAS  Google Scholar 

  36. Zhao, B.; Guo, X. Q.; Zhou, Y. Y.; Su, T. T.; Ma, C.; Zhang, R. Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide-band microwave absorbers. Crystengcomm 2017, 19, 2178–2186.

    CAS  Google Scholar 

  37. Lv, J.; Liang, X. H.; Ji, G. B.; Quan, B.; Liu, W.; Du, Y. W. Structural and carbonized design of 1D FeNi/C nanofibers with conductive network to optimize electromagnetic parameters and absorption abilities. ACS Sustainable Chem. Eng. 2018, 6, 7239–7249.

    CAS  Google Scholar 

  38. Qu, Y. P.; Du, Y.; Fan, G. H.; **n, J. H.; Liu, Y.; **e, P. T.; You, S. X.; Zhang, Z. D.; Sun, K.; Fan, R. H. Low-temperature sintering graphene/CaCu3Ti4O12 nanocomposites with tunable negative permittivity. J. Alloys Compd. 2019, 771, 699–710.

    CAS  Google Scholar 

  39. Wang, L. X.; Zhou, P. P.; Guo, Y.; Zhang, J.; Qiu, X.; Guan, Y. K.; Yu, M. X.; Zhu, H. L.; Zhang, Q. T. The effect of ZnCl2 activation on microwave absorbing performance in walnut shell-derived nanoporous carbon. RSC Adv. 2019, 9, 9718–9728.

    CAS  Google Scholar 

  40. Feng, J.; Pu, F. Z.; Li, Z. X.; Li, X. H.; Hu, X. Y.; Bai, J. T. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 2016, 104, 214–225.

    CAS  Google Scholar 

  41. Liu, X. G.; Li, B.; Geng, D. Y.; Cui, W. B.; Yang, F.; **e, Z. G.; Kang, D. J.; Zhang, Z. D. (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon 2009, 47, 470–474.

    CAS  Google Scholar 

  42. Zhao, H. Q.; Cheng, Y.; Lv, H. L.; Ji, G. B.; Du, Y. W. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 2019, 142, 245–253.

    CAS  Google Scholar 

  43. Ying, T. P.; Zhang, J.; Liu, X. G.; Yu, J. H.; Yu, J. Y.; Zhang, X. F. Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application. J. Alloys Compd. 2020, 849, 156662.

    CAS  Google Scholar 

  44. Ren, H. D.; Shu, X. F.; Liu, Z. Y.; Zhou, J.; Ma, J. L.; Liu, Y.; Kong, L. B.; Min, F. F.; Shi, X. C.; Han, J. J. et al. In-sttu synthesis of layered porous coal-derived carbon/Ni magnetic composites with promising microwave absorption performance. J. Magn. Magn. Mater. 2020, 513, 167231.

    CAS  Google Scholar 

  45. Li, W. X.; Guo, F.; Wei, X. Q.; Du, Y. E.; Chen, Y. Q. Preparation of Ni/C porous fibers derived from jute fibers for high-performance microwave absorption. RSC Adv. 2020, 10, 36644–36653.

    CAS  Google Scholar 

  46. Uddin, W.; ur Rehman, S.; Aslam, M. A.; ur Rehman, S.; Wu, M. Z.; Zhu, M. Z. Enhanced microwave absorption from the magnetic-dielectric interface: A hybrid rGO@Ni-doped-MoS2. Mater. Res. Bull. 2020, 130, 110943.

    CAS  Google Scholar 

  47. Liu, Y.; Ji, C.; Su, X. L.; He, X. H.; Xu, J.; Li, Y. Y. Enhanced microwave absorption properties of flaky MoS2 powders by decorating with Ni particles. J. Magn. Magn. Mater. 2020, 511, 166961.

    CAS  Google Scholar 

  48. Fan, G. H.; Jiang, Y. L.; Hou, C. X.; Deng, X. R.; Liu, Z. X.; Zhang, L. J.; Zhang, Z. D.; Fan, R. H. Extremely facile and green synthesis of magnetic carbon composites drawn from natural bulrush for electromagnetic wave absorbing. J. Alloys Compd. 2020, 835, 155345.

    CAS  Google Scholar 

  49. Wang, Z. X.; Yu, Q.; Nie, W. C.; Chen, P. Preparation and microwave absorption properties of Ni/rGO/EP composite foam. J. Mater. Res. 2020, 35, 2106–2114.

    CAS  Google Scholar 

  50. Shen, Y. Q.; Wei, Y. P.; Ma, J. Q.; Zhang, Y. C.; Ji, B. H.; Tang, J.; Zhang, L. Y.; Yan, P. Z.; Du, X. Y. Self-cleaning functionalized FeNi/NiFe2O4/NiO/C nanofibers with enhanced microwave absorption performance. Ceram. Int. 2020, 46, 13397–13406.

    CAS  Google Scholar 

  51. Liu, Y.; Zhang, S.; Su, X. L.; Xu, J.; Li, Y. Y. Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles. J. Mater. Sci. 2020, 55, 10339–10350.

    CAS  Google Scholar 

  52. Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123207.

    CAS  Google Scholar 

  53. Kuchi, R.; Latif, T.; Lee, S. W.; Dongquoc, V.; Van, P. C.; Kim, D.; Jeong, J. R. Controlling the electric permittivity of honeycomb-like core-shell Ni/CuSiO3 composite nanospheres to enhance microwave absorption properties. RSC Adv. 2020, 10, 1172–1180.

    CAS  Google Scholar 

  54. Li, N.; **e, X.; Lu, H. X.; Fan, B. B.; Wang, X. H.; Zhao, B.; Zhang, R.; Yang, R. Novel two-dimensional Ti3C2Tx/Ni-spheres hybrids with enhanced microwave absorption properties. Ceram. Int. 2019, 45, 22880–22888.

    CAS  Google Scholar 

  55. Zheng, Y.; Zhang, W. D.; Zhang, X.; Zhu, Q.; Zhu, W. F.; Wang, R. M.; Qi, S. H. Structure and performance of Ni@Ni3S2 foam for microwave absorption. J. Phys. D:Appl. Phys. 2019, 52, 485003.

    CAS  Google Scholar 

  56. Liu, D. W.; Du, Y. C.; Xu, P.; Liu, N.; Wang, Y. H.; Zhao, H. H.; Cui, L. R.; Han, X. J. Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 2019, 7, 5037–5046.

    CAS  Google Scholar 

  57. Huang, L. N.; Chen, C. G.; Huang, X. Y.; Ruan, S. C.; Zeng, Y. J. Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos. Part B:Eng. 2019, 164, 583–589.

    CAS  Google Scholar 

  58. Wang, Z. Z.; Yang, W.; Lv, Q. R.; Liu, S. Q.; Fang, Z. Ferromagnetic and excellent microwave absorbing properties of CoNi microspheres and heterogeneous Co/Ni nanocrystallines. RSC Adv. 2019, 9, 13365–13371.

    CAS  Google Scholar 

  59. Gao, S. S.; An, Q. D.; **ao, Z. Y.; Zhai, S. R.; Yang, D. J. Controllable N-doped carbonaceous composites with highly dispersed Ni nanoparticles for excellent microwave absorption. ACS Appl. Nano Mater. 2018, 1, 5895–5906.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Academy of Launch Vehicle Technology (Nos. 5120200522 and 5120210234), the National Natural Science Foundation of China (No. 21875190), Foundation of Aeronautics Science Fund (No. 2020Z056053002), and Fundamental Research Funds for the Central Universities (construction and low-frequency microwave absorption properties of metamaterials).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Wang or Jie Kong.

Electronic Supplementary Material

12274_2022_4511_MOESM1_ESM.pdf

Hollow hydrangea-like nitrogen-doped NiO/Ni/carbon composites as lightweight and highly efficient electromagnetic wave absorbers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Li, C., Cao, X. et al. Hollow hydrangea-like nitrogen-doped NiO/Ni/carbon composites as lightweight and highly efficient electromagnetic wave absorbers. Nano Res. 15, 6831–6840 (2022). https://doi.org/10.1007/s12274-022-4511-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4511-3

Keywords

Navigation