Log in

Innovations and challenges of polyphenol-based smart drug delivery systems

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Polyphenols, as widely existing natural bioactive products, provide a vast array of advanced biomedical applications attributing to their potential health benefits that linked to antioxidant, anti-inflammatory, immunoregulatory, neuroprotective, cardioprotective function, etc. The polyphenol compounds could dynamically interact and bind with diverse species (such as polymers, metal ions, biomacromolecules, etc.) via multiple interactions, including hydrogen bond, hydrophobic, π—π, and cation—π interactions due to their unique chemical polyphenolic structures, providing far-ranging strategies for designing of polyphenol-based vehicles. Natural polyphenols emerged as multifaceted players, acting either as inherent therapeutics delivered to combat diverse diseases or as pivotal assemblies of drug delivery vehicles. In this review, we focused on the rational design and application of metal-phenolic network (MPN) based delivery systems, polyphenol-based coating films, polyphenol hollow capsules, polyphenol-incorporated hydrogels, and polymer-polyphenol-based nanoparticles (NPs) in various diseases therapeutic, including cancer, infection, cardiovascular disease, neurodegenerative disease, etc. Additionally. the versatility and mechanisms of polyphenols in the field of biomacromolecules (e.g., protein, peptide, nucleic acid, etc.) delivery and cell therapy have been comprehensively summarized. Going through the literature review, the remaining challenges of polyphenol-containing nanosystems need to be addressed are involved, including long-term stability, biosafety in vivo, feasibility of scale-up, etc., which may enlighten the further developments of this field. This review provides perspectives in utilizing natural polyphenol-based biomaterials to rationally design next generation versatile drug delivery system in the field of biomedicine, which eventually benefits public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhatla, S. C.; Lal, M. A. Plant Physiology, Development and Metabolism; Springer: Singapore, 2018; pp 1099–1166.

    Google Scholar 

  2. Zhang, L.; Ho, C. T.; Zhou, J.; Santos, J. S.; Armstrong, L.; Granato, D. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495.

    Article  CAS  Google Scholar 

  3. Luca, S. V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Wozniak, K.; Aprotosoaie, A. C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr. 2020, 60, 626–659.

    Article  CAS  Google Scholar 

  4. Hoseyni, S. Z.; Jafari, S. M.; Tabarestani, H. S.; Ghorbani, M.; Assadpour, E.; Sabaghi, M. Production and characterization of catechin-loaded electrospun nanofibers from Azivash gumpolyvinyl alcohol. Carbohydr. Polym. 2020, 235, 115979.

    Article  CAS  Google Scholar 

  5. Shim, G.; Ko, S.; Park, J. Y.; Suh, J. H.; Le, Q. V.; Kim, D.; Kim, Y. B.; Im, G. H.; Kim, H. N.; Choe, Y. S. et al. Tannic acidfunctionalized boron nitride nanosheets for theranostics. J. Controlled Release 2020, 327, 616–626.

    Article  CAS  Google Scholar 

  6. Kharat, P.; Sarkar, P.; Mouliganesh, S.; Tiwary, V.; Priya, V. B. R.; Sree, N. Y.; Annapoorna, H. V.; Saikia, D. K.; Mahanta, K.; Thirumurugan, K. Ellagic acid prolongs the lifespan of Drosophila melanogaster. GeroScience 2020, 42, 271–285.

    Article  CAS  Google Scholar 

  7. Cao, H. P.; Sethumadhavan, K.; Cao, F. P.; Wang, T. T. Y. Gossypol decreased cell viability and down-regulated the expression of a number of genes in human colon cancer cells. Sci. Rep. 2021, 11, 5922.

    Article  CAS  Google Scholar 

  8. Zhou, Z. D.; **e, S. P.; Saw, W. T.; Ho, P. G. H.; Wang, H. Y.; Zhou, L.; Zhao, Y.; Tan, E. K. The therapeutic implications of tea polyphenols against dopamine (DA) neuron degeneration in parkinson’s disease (PD). Cells 2019, 8, 911.

    Article  CAS  Google Scholar 

  9. do Valle, I. F.; Roweth, H. G.; Malloy, M. W.; Moco, S.; Barron, D.; Battinelli, E.; Loscalzo, J.; Barabási, A. L. Network medicine framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic effects of polyphenols. Nat. Food 2021, 2, 143–155.

    Article  Google Scholar 

  10. Sharma, A.; Vaghasiya, K.; Ray, E.; Gupta, P.; Gupta, U. D.; Singh, A. K.; Verma, R. K. Targeted pulmonary delivery of the green tea polyphenol epigallocatechin gallate controls the growth of Mycobacterium tuberculosis by enhancing the autophagy and suppressing bacterial burden. ACS Biomater. Sci. Eng. 2020, 6, 4126–4140.

    Article  CAS  Google Scholar 

  11. Mirza-Aghazadeh-Attari, M.; Ekrami, E. M.; Aghdas, S. A. M.; Mihanfar, A.; Hallaj, S.; Yousefi, B.; Safa, A.; Majidinia, M. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sci. 2020, 255, 117481.

    Article  CAS  Google Scholar 

  12. Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Jimenez, M. T. B.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T. et al. Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxid. Med. Cell. Longev. 2019, 2019, 7092151.

    Article  Google Scholar 

  13. Ornatowski, W.; Lu, Q.; Yegambaram, M.; Garcia, A. E.; Zemskov, E. A.; Maltepe, E.; Fineman, J. R.; Wang, T.; Black, S. M. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol. 2020, 36, 101679.

    Article  CAS  Google Scholar 

  14. Forman, H. J.; Zhang, H. Q. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discovery 2021, 20, 689–709.

    Article  CAS  Google Scholar 

  15. Yan, Z. M.; Zhong, Y. Z.; Duan, Y. H.; Chen, Q. H.; Li, F. N. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6, 115–123.

    Article  Google Scholar 

  16. Zhang, J. H.; Fu, Y.; Yang, P.; Liu, X. H.; Li, Y. W.; Gu, Z. P. ROS scavenging biopolymers for anti-inflammatory diseases: Classification and formulation. Adv. Mater. Inter. 2020, 7, 2000632.

    Article  CAS  Google Scholar 

  17. Negri, A.; Naponelli, V.; Rizzi, F.; Bettuzzi, S. Molecular targets of epigallocatechin-gallate (EGCG): A special focus on signal transduction and cancer. Nutrients 2018, 10, 1936.

    Article  Google Scholar 

  18. Yang, L. Q.; Zhang, W. Q.; Chopra, S.; Kaur, D.; Wang, H. B.; Li, M.; Chen, P. P.; Zhang, W. The epigenetic modification of epigallocatechin gallate (EGCG) on cancer. Curr. Drug Targets 2020, 21, 1099–1104.

    Article  CAS  Google Scholar 

  19. Campbell, N. K.; Fitzgerald, H. K.; Fletcher, J. M.; Dunne, A. Plant-derived polyphenols modulate human dendritic cell metabolism and immune function via AMPK-dependent induction of heme oxygenase-1. Front. Immunol. 2019, 10, 345.

    Article  CAS  Google Scholar 

  20. Magrone, T.; Magrone, M.; Russo, M. A.; Jirillo, E. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: In vitro and in vivo studies. Antioxidants 2020, 9, 35.

    Article  CAS  Google Scholar 

  21. Zhou, J. J.; Lin, Z. X.; Ju, Y.; Rahim, A.; Richardson, J. J.; Caruso, F. Polyphenol-mediated assembly for particle engineering. Acc. Chem. Res. 2020, 53, 1269–1278.

    Article  CAS  Google Scholar 

  22. Liu, H.; Zhang, X. Y.; Xu, Z. P.; Wang, Y. M.; Ke, Y. H.; Jiang, Z. B.; Yuan, Z.; Li, H. Role of polyphenols in plant-mediated synthesis of gold nanoparticles: Identification of active components and their functional mechanism. Nanotechnology 2020, 31, 415601.

    Article  CAS  Google Scholar 

  23. Lakey-Beitia, J.; Burillo, A. M.; La Penna, G.; Hegde, M. L.; Rao, K. S. Polyphenols as potential metal chelation compounds against Alzheimer’s disease. J. Alzheimer’s Dis. 2021, 82, S335–S357.

    Article  CAS  Google Scholar 

  24. Shen, Y. T.; Li, S. K.; Qi, R. L.; Wu, C. X.; Yang, M.; Wang, J.; Cai, Z. J.; Liu, K. A.; Yue, J. L.; Guan, B. et al. Assembly of hexagonal column interpenetrated spheres from plant polyphenol/cationic surfactants and their application as antimicrobial molecular banks. Angew. Chem., Int. Ed. 2022, 61, e202110938.

    Article  CAS  Google Scholar 

  25. Han, Y. Y.; Lin, Z. X.; Zhou, J. J.; Yun, G.; Guo, R.; Richardson, J. J.; Caruso, F. Polyphenol-mediated assembly of proteins for engineering functional materials. Angew. Chem., Int. Ed. 2020, 59, 15618–15625.

    Article  CAS  Google Scholar 

  26. Li, C. H.; Dai, T. T.; Chen, J.; Li, X.; Li, T.; Liu, C. M.; McClements, D. J. Protein-polyphenol functional ingredients: The foaming properties of lactoferrin are enhanced by forming complexes with procyanidin. Food Chem. 2021, 339, 128145.

    Article  CAS  Google Scholar 

  27. Adrar, N. S.; Madani, K.; Adrar, S. Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions. PharmaNutrition 2019, 7, 100142.

    Article  Google Scholar 

  28. Lin, D. R.; **ao, L. J.; Qin, W.; Loy, D. A.; Wu, Z. J.; Chen, H.; Zhang, Q. Preparation, characterization and antioxidant properties of curcumin encapsulated chitosan/lignosulfonate micelles. Carbohydr. Polym. 2022, 281, 119080.

    Article  CAS  Google Scholar 

  29. Schmidt, M. P.; Siciliano, S. D.; Peak, D. The role of monodentate tetrahedral borate complexes in boric acid binding to a soil organic matter analogue. Chemosphere 2021, 276, 130150.

    Article  CAS  Google Scholar 

  30. Prossnitz, A. N.; Pun, S. H. Modulating boronic ester stability in block copolymer micelles via the neighbor effect of copolymerized tertiary amines for controlled release of polyphenolic drugs. ACS Macro Lett. 2022, 11, 276–283.

    Article  CAS  Google Scholar 

  31. Geng, H. M.; Dai, Q.; Sun, H. F.; Zhuang, L. P.; Song, A. X.; Caruso, F.; Hao, J. C.; Cui, J. W. Injectable and sprayable polyphenol-based hydrogels for controlling hemostasis. ACS Appl. Bio Mater. 2020, 3, 1258–1266.

    Article  CAS  Google Scholar 

  32. Guo, J. L.; Suma, T.; Richardson, J. J.; Ejima, H. Modular assembly of biomaterials using polyphenols as building blocks. ACS Biomater. Sci. Eng. 2019, 5, 5578–5596.

    Article  CAS  Google Scholar 

  33. Centurion, F.; Namivandi-Zangeneh, R.; Flores, N.; Tajik, M.; Merhebi, S.; Abbasi, R.; Mayyas, M.; Allioux, F. M.; Tang, J. B.; Donald, W. A. et al. Liquid metal-triggered assembly of phenolic nanocoatings with antioxidant and antibacterial properties. ACS Appl. Nano Mater. 2021, 4, 2987–2998.

    Article  CAS  Google Scholar 

  34. Tang, H. Y.; Fang, Z. X.; Ng, K. Dietary fiber-based colon-targeted delivery systems for polyphenols. Trends Food Sci. Technol. 2020, 100, 333–348.

    Article  CAS  Google Scholar 

  35. Bhangu, S. K.; Charchar, P.; Noble, B. B.; Kim, C. J.; Pan, S.; Yarovsky, I.; Cavalieri, F.; Caruso, F. Origins of structural elasticity in metal-phenolic networks probed by super-resolution microscopy and multiscale simulations. ACS Nano 2021, 16, 98–110.

    Article  Google Scholar 

  36. Gao, X. H.; Wang, Q.; Ren, L. L.; Gong, P.; He, M.; Tian, W. D.; Zhao, W. F. Metal-phenolic networks as a novel filler to advance multi-functional immunomodulatory biocomposites. Chem. Eng. J. 2021, 426, 131825.

    Article  CAS  Google Scholar 

  37. Liu, P.; Shi, X. Y.; Zhong, S. H.; Peng, Y.; Qi, Y.; Ding, J. S.; Zhou, W. H. Metal-phenolic networks for cancer theranostics. Biomater. Sci. 2021, 9, 2825–2849.

    Article  CAS  Google Scholar 

  38. Zhang, B.; Yao, R. J.; Li, L. H.; Wang, Y. N.; Luo, R. F.; Yang, L.; Wang, Y. B. Green tea polyphenol induced Mg2+-rich multilayer conversion coating: Toward enhanced corrosion resistance and promoted in situ endothelialization of AZ31 for potential cardiovascular applications. ACS Appl. Mater. Interfaces 2019, 11, 41165–41177.

    Article  CAS  Google Scholar 

  39. Chen, S.; Fan, J. X.; Zheng, D. W.; Liu, F.; Zeng, X.; Yan, G. P.; Zhang, X. Z. A multi-functional drug delivery system based on polyphenols for efficient tumor inhibition and metastasis prevention. Biomater. Sci. 2020, 8, 702–711.

    Article  CAS  Google Scholar 

  40. Nagesh, P. K. B.; Chowdhury, P.; Hatami, E.; Kumari, S.; Kashyap, V. K.; Tripathi, M. K.; Wagh, S.; Meibohm, B.; Chauhan, S. C.; Jaggi, M. et al. Cross-linked polyphenol-based drug nano-self-assemblies engineered to blockade prostate cancer senescence. ACS Appl. Mater. Interfaces 2019, 11, 38537–38554.

    Article  CAS  Google Scholar 

  41. Qin, Y.; Wang, J. P.; Qiu, C.; Hu, Y.; Xu, X. M.; **, Z. Y. Self-assembly of metal-phenolic networks as functional coatings for preparation of antioxidant, antimicrobial, and pH-sensitive-modified starch nanoparticles. ACS Sustainable Chem. Eng. 2019, 7, 17379–17389.

    Article  CAS  Google Scholar 

  42. Zhao, G. Z.; Wu, H. H.; Feng, R. L.; Wang, D. D.; Xu, P. P.; Jiang, P.; Yang, K.; Wang, H. B.; Guo, Z.; Chen, Q. W. Novel metal polyphenol framework for MR imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10, 3295–3304.

    Article  CAS  Google Scholar 

  43. Liu, T.; Zhang, M. K.; Liu, W. L.; Zeng, X.; Song, X. L.; Yang, X. Q.; Zhang, X. Z.; Feng, J. Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications. ACS Nano 2018, 12, 3917–3927.

    Article  CAS  Google Scholar 

  44. Yan, G. H.; Chen, G. F.; Peng, Z. Q.; Shen, Z. L.; Tang, X.; Sun, Y.; Zeng, X. H.; Lin, L. The cross-linking mechanism and applications of catechol-metal polymer materials. Adv. Mater. Interfaces 2021, 8, 2100239.

    Article  CAS  Google Scholar 

  45. Zhao, Y. Y.; Zhang, Y. Q.; Li, F. R.; Bai, Y. P.; Pan, Y. L.; Ma, J.; Zhang, S.; Shao, L. Ultra-robust superwetting hierarchical membranes constructed by coordination complex networks for oily water treatment. J. Membr. Sci. 2021, 627, 119234.

    Article  CAS  Google Scholar 

  46. Wang, Q.; Xu, Y.; Xue, R.; Fan, J. M.; Yu, H.; Guan, J. W.; Wang, H. Z.; Li, M.; Yu, W.; **e, Z. Y. et al. All-in-one theranostic platform based on hollow microcapsules for intragastric-targeting antiulcer drug delivery, CT imaging, and synergistically healing gastric ulcer. Small 2022, 18, 2104660.

    Article  CAS  Google Scholar 

  47. Chowdhury, P.; Nagesh, P. K. B.; Hatami, E.; Wagh, S.; Dan, N.; Tripathi, M. K.; Khan, S.; Hafeez, B. B.; Meibohm, B.; Chauhan, S. C. et al. Tannic acid-inspired paclitaxel nanoparticles for enhanced anticancer effects in breast cancer cells. J. Colloid Interface Sci. 2019, 535, 133–148.

    Article  CAS  Google Scholar 

  48. Fan, J. X.; Zheng, D. W.; Mei, W. W.; Chen, S.; Chen, S. Y.; Cheng, S. X.; Zhang, X. Z. A metal-polyphenol network coated nanotheranostic system for metastatic tumor treatments. Small 2017, 13, 1702714.

    Article  Google Scholar 

  49. Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; van Koeverden, M. P.; Such, G. K.; Cui, J. W.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154–157.

    Article  CAS  Google Scholar 

  50. Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244.

    Article  CAS  Google Scholar 

  51. Wojnilowicz, M.; Glab, A.; Bertucci, A.; Caruso, F.; Cavalieri, F. Super-resolution imaging of proton sponge-triggered rupture of endosomes and cytosolic release of small interfering RNA. ACS Nano 2019, 13, 187–202.

    Article  CAS  Google Scholar 

  52. Dong, Z. L.; Hao, Y.; Li, Q. G.; Yang, Z. J.; Zhu, Y. J.; Liu, Z.; Feng, L. Z. Metal-polyphenol-network coated CaCO3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments. Nano Res. 2020, 13, 3057–3067.

    Article  CAS  Google Scholar 

  53. Chen, J. Q.; Pan, S. J.; Zhou, J. J.; Seidel, R.; Beyer, S.; Lin, Z. X.; Richardson, J. J.; Caruso, F. Metal-phenolic networks as tunable buffering systems. Chem. Mater. 2021, 33, 2557–2566.

    Article  CAS  Google Scholar 

  54. Chen, J. Q.; Li, J. H.; Zhou, J. J.; Lin, Z. X.; Cavalieri, F.; Czuba-Wojnilowicz, E.; Hu, Y. J.; Glab, A.; Ju, Y.; Richardson, J. J. et al. Metal-phenolic coatings as a platform to trigger endosomal escape of nanoparticles. ACS Nano 2019, 13, 11653–11664.

    Article  CAS  Google Scholar 

  55. Shin, M.; Lee, H. A.; Lee, M.; Shin, Y.; Song, J. J.; Kang, S. W.; Nam, D. H.; Jeon, E. J.; Cho, M.; Do, M. et al. Targeting protein and peptide therapeutics to the heart via tannic acid modification. Nat. Biomed. Eng. 2018, 2, 304–317.

    Article  CAS  Google Scholar 

  56. Torrieri, G.; Ferreira, M. P. A.; Shahbazi, M. A.; Talman, V.; Karhu, S. T.; Pohjolainen, L.; Carvalho, C.; Pinto, J. F.; Hirvonen, J.; Ruskoaho, H. et al. In vitro evaluation of the therapeutic effects of dual-drug loaded spermine-acetalated dextran nanoparticles coated with tannic acid for cardiac applications. Adv. Funct. Mater. 2022, 32, 2109032.

    Article  CAS  Google Scholar 

  57. Qin, J.; Liang, G. H.; Cheng, D.; Liu, Y. N.; Cheng, X. R.; Yang, P. K.; Wu, N.; Zhao, Y. X.; Wei, J. Controllable synthesis of iron-polyphenol colloidal nanoparticles with composition-dependent photothermal performance. J. Colloid Interface Sci. 2021, 593, 172–181.

    Article  CAS  Google Scholar 

  58. Zhang, C.; Hu, D. F.; Xu, J. W.; Ma, M. Q.; **ng, H. B.; Yao, K.; Ji, J.; Xu, Z. K. Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 2018, 12, 12347–12356.

    Article  CAS  Google Scholar 

  59. Zeng, J. F.; Cheng, M.; Wang, Y.; Wen, L.; Chen, L.; Li, Z.; Wu, Y. Y.; Gao, M. Y.; Chai, Z. F. pH-responsive Fe(III)-gallic acid nanoparticles for in vivo photoacoustic-imaging-guided photothermal therapy. Adv. Healthc. Mater. 2016, 5, 772–780.

    Article  CAS  Google Scholar 

  60. Yang, B.; Zhou, S.; Zeng, J.; Zhang, L. P.; Zhang, R. H.; Liang, K.; **e, L.; Shao, B.; Song, S. L.; Huang, G. et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020, 13, 1013–1019.

    Article  CAS  Google Scholar 

  61. **ang, J. J.; Li, Y. W.; Zhang, Y. F.; Wang, G. W.; Xu, H. X.; Zhou, Z. X.; Tang, J. B.; Shen, Y. Q. Polyphenol-cisplatin complexation forming core-shell nanoparticles with improved tumor accumulation and dual-responsive drug release for enhanced cancer chemotherapy. J. Controlled Release 2021, 330, 992–1003.

    Article  CAS  Google Scholar 

  62. Dai, Y. L.; Yang, Z.; Cheng, S. Y.; Wang, Z. L.; Zhang, R. L.; Zhu, G. Z.; Wang, Z. T.; Yung, B. C.; Tian, R.; Jacobson, O. et al. Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles. Adv. Mater. 2018, 30, 1704877.

    Article  Google Scholar 

  63. Zhang, J.; Yang, J.; Zuo, T. T.; Ma, S. Y.; Xokrat, N.; Hu, Z. W.; Wang, Z. H.; Xu, R.; Wei, Y. W.; Shen, Q. Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy. Biomaterials 2021, 266, 120429.

    Article  CAS  Google Scholar 

  64. Jia, C. Y.; Deacon, G. B.; Zhang, Y. J.; Gao, C. Z. Platinum(IV) antitumor complexes and their nano-drug delivery. Coord. Chem. Rev. 2021, 429, 213640.

    Article  CAS  Google Scholar 

  65. Meng, X.; Zhang, F.; Guo, H. L.; Zhang, C. Y.; Hu, H. T.; Wang, W.; Liu, J.; Shuai, X. T.; Cao, Z. One-pot approach to Fe2+/Fe3+-based MOFs with enhanced catalytic activity for Fenton reaction. Adv. Healthc. Mater. 2021, 10, 2100780.

    Article  CAS  Google Scholar 

  66. Wan, X. Y.; Song, L. Q.; Pan, W.; Zhong, H.; Li, N.; Tang, B. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS Nano 2020, 14, 11017–11028.

    Article  CAS  Google Scholar 

  67. Fu, L. H.; Wan, Y. L.; Qi, C.; He, J.; Li, C. Y.; Yang, C.; Xu, H.; Lin, J.; Huang, P. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater. 2021, 33, 2006892.

    Article  CAS  Google Scholar 

  68. Dai, Y. L.; Guo, J. L.; Wang, T. Y.; Ju, Y.; Mitchell, A. J.; Bonnard, T.; Cui, J. W.; Richardson, J. J.; Hagemeyer, C. E.; Alt, K. et al. Self-assembled nanoparticles from phenolic derivatives for cancer therapy. Adv. Healthc. Mater. 2017, 6, 1700467.

    Article  Google Scholar 

  69. Zhao, J.; Blayney, A.; Liu, X. R.; Gandy, L.; **, W. H.; Yan, L. F.; Ha, J. H.; Canning, A. J.; Connelly, M.; Yang, C. et al. EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction. Nat. Commun. 2021, 12, 986.

    Article  CAS  Google Scholar 

  70. Heyza, J. R.; Arora, S.; Zhang, H.; Conner, K. L.; Lei, W.; Floyd, A. M.; Deshmukh, R. R.; Sarver, J.; Trabbic, C. J.; Erhardt, P. et al. Targeting the DNA repair endonuclease ERCC1-XPF with green tea polyphenol epigallocatechin-3-gallate (EGCG) and its prodrug to enhance cisplatin efficacy in human cancer cells. Nutrients 2018, 10, 1644.

    Article  Google Scholar 

  71. Luo, S. Y.; Wang, Y.; Shen, S. H.; Tang, P.; Liu, Z. Y.; Zhang, S.; Wu, D. C. IR780-loaded hyaluronic acid@gossypol-Fe(III)-EGCG infinite coordination polymer nanoparticles for highly efficient tumor photothermal/coordinated dual drugs synergistic therapy. Adv. Funct. Mater. 2021, 31, 2100954.

    Article  CAS  Google Scholar 

  72. Ren, Z. G.; Sun, S. C.; Sun, R. R.; Cui, G. Y.; Hong, L. J.; Rao, B. C.; Li, A.; Yu, Z. J.; Kan, Q. C.; Mao, Z. W. A metal-polyphenolcoordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy. Adv. Mater. 2020, 32, 1906024.

    Article  CAS  Google Scholar 

  73. Kong, Y.; Liu, F.; Ma, B. J.; Wang, W. H.; Li, L.; Xu, X. Y.; Sun, Z. Y.; Yang, H. R.; Sang, Y. H.; Li, D. et al. Intracellular pH-responsive iron-catechin nanoparticles with osteogenic/antiadipogenic and immunomodulatory effects for efficient bone repair. Nano Res. 2022, 15, 1153–1161.

    Article  CAS  Google Scholar 

  74. Zhou, Z. Q.; Gong, F.; Zhang, P.; Wang, X. T.; Zhang, R.; **a, W.; Gao, X.; Zhou, X. Z.; Cheng, L. Natural product curcumin-based coordination nanoparticles for treating osteoarthritis via targeting Nrf2 and blocking NLRP3 inflammasome. Nano Res. 2022, 15, 3338–3345.

    Article  CAS  Google Scholar 

  75. Qin, J.; Liang, G. H.; Feng, Y. Y.; Feng, B. X.; Wang, G.; Wu, N.; Zhao, Y. X.; Wei, J. Synthesis of gadolinium/iron-bimetal-phenolic coordination polymer nanoparticles for theranostic applications. Nanoscale 2020, 12, 6096–6103.

    Article  CAS  Google Scholar 

  76. Shan, L. L.; Gao, G. Z.; Wang, W. W.; Tang, W.; Wang, Z. T.; Yang, Z.; Fan, W. P.; Zhu, G. Z.; Zhai, K. F.; Jacobson, O. et al. Self-assembled green tea polyphenol-based coordination nanomaterials to improve chemotherapy efficacy by inhibition of carbonyl reductase 1. Biomaterials 2019, 210, 62–69.

    Article  CAS  Google Scholar 

  77. Cao, H. P.; Sethumadhavan, K.; Wu, X. Y.; Zeng, X. C. Cottonseed-derived gossypol and ethanol extracts differentially regulate cell viability and VEGF gene expression in mouse macrophages. Sci. Rep. 2021, 11, 15700.

    Article  CAS  Google Scholar 

  78. Zhang, Z.; **e, L. S.; Ju, Y.; Dai, Y. L. Recent advances in metal-phenolic networks for cancer theranostics. Small 2021, 17, 2100314.

    Article  CAS  Google Scholar 

  79. Zhang, Z.; Sang, W.; **e, L. S.; Li, W. X.; Li, B.; Li, J.; Tian, H.; Yuan, Z.; Zhao, Q.; Dai, Y. L. Polyphenol-based nanomedicine evokes immune activation for combination cancer treatment. Angew. Chem., Int. Ed. 2021, 60, 1967–1975.

    Article  CAS  Google Scholar 

  80. Zhuo, S. Y.; Yu, X.; Wang, C.; Liu, S. L.; Wang, X. F.; Tian, Y. Engineering hollow metal ion-phenolic capsules and metal-doped hollow mesoporous carbon spheres with “full green” style. Mater. Lett. 2021, 289, 129440.

    Article  CAS  Google Scholar 

  81. Wang, Q.; Gao, Z. L.; Zhong, Q. Z.; Wang, N.; Mei, H. X.; Dai, Q.; Cui, J. W.; Hao, J. C. Encapsulation of enzymes in metal-phenolic network capsules for the trigger of intracellular cascade reactions. Langmuir 2021, 37, 11292–11300.

    Article  CAS  Google Scholar 

  82. Pan, S. J.; Goudeli, E.; Chen, J. Q.; Lin, Z. X.; Zhong, Q. Z.; Zhang, W. J.; Yu, H. T.; Guo, R.; Richardson, J. J.; Caruso, F. Exploiting supramolecular dynamics in metal-phenolic networks to generate metal-oxide and metal-carbon networks. Angew. Chem., Int. Ed. 2021, 60, 14586–14594.

    Article  CAS  Google Scholar 

  83. Wei, Y. Q.; Wei, Z. Z.; Luo, P. C.; Wei, W.; Liu, S. Q. pH-sensitive metal-phenolic network capsules for targeted photodynamic therapy against cancer cells. Artif. Cells, Nanomed., Biotechnol. 2018, 46, 1552–1561.

    CAS  Google Scholar 

  84. Zhang, Z. J.; Yang, Y.; Sun, L.; Liu, R. Direct conversion of metal-polyphenolic coordination assembly to MnOx-Carbon nanocomposites for catalytic degradation of methylene blue. Mater. Lett. 2018, 221, 97–100.

    Article  CAS  Google Scholar 

  85. Dai, Q.; Geng, H. M.; Yu, Q.; Hao, J. C.; Cui, J. W. Polyphenol-based particles for theranostics. Theranostics 2019, 9, 3170–3190.

    Article  CAS  Google Scholar 

  86. Wang, X. Y.; Fan, Y. L.; Yan, J. J.; Yang, M. Engineering polyphenol-based polymeric nanoparticles for drug delivery and bioimaging. Chem. Eng. J. 2022, 439, 135661.

    Article  CAS  Google Scholar 

  87. **, Y.; Guo, J. L.; Ejima, H.; Chen, X.; Richardson, J. J.; Sun, H. L.; Caruso, F. pH-responsive capsules engineered from metalphenolic networks for anticancer drug delivery. Small 2015, 11, 2032–2036.

    Article  CAS  Google Scholar 

  88. Guo, J. L.; **, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J. J.; Yan, Y.; Peter, K.; von Elverfeldt, D.; Hagemeyer, C. E. et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem., Int. Ed. 2014, 53, 5546–5551.

    Article  CAS  Google Scholar 

  89. Kargozar, S.; Baino, F.; Hamzehlou, S.; Hamblin, M. R.; Mozafari, M. Nanotechnology for angiogenesis: Opportunities and challenges. Chem. Soc. Rev. 2020, 49, 5008–5057.

    Article  CAS  Google Scholar 

  90. **ao, J. S.; Chen, S. Y.; Yi, J.; Zhang, H. F.; Ameer, G. A. A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes. Adv. Funct. Mater. 2017, 27, 1604872.

    Article  Google Scholar 

  91. **ao, J. S.; Zhu, Y. X.; Huddleston, S.; Li, P.; **ao, B. X.; Farha, O. K.; Ameer, G. A. Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano 2018, 12, 1023–1032.

    Article  CAS  Google Scholar 

  92. Zhang, C. S.; Yu, K. J.; Li, F. H.; **ang, J. H. Acute toxic effects of zinc and mercury on survival, standard metabolism, and metal accumulation in juvenile ridgetail white prawn, Exopalaemon carinicauda. Ecotoxicol. Environ. Saf. 2017, 145, 549–556.

    Article  CAS  Google Scholar 

  93. Duan, J. W.; Chen, Z. G.; Liang, X. Y.; Chen, Y. L.; Li, H. Y.; Tian, X. X.; Zhang, M. M.; Wang, X. L.; Sun, H. F.; Kong, D. L. et al. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease. Biomaterials 2020, 255, 120199.

    Article  CAS  Google Scholar 

  94. Chen, Z. G.; Duan, J. W.; Diao, Y. P.; Chen, Y. L.; Liang, X. Y.; Li, H. Y.; Miao, Y. Q.; Gao, Q.; Gui, L.; Wang, X. L. et al. ROS-responsive capsules engineered from EGCG-Zinc networks improve therapeutic angiogenesis in mouse limb ischemia. Bioact. Mater 2021, 6, 1–11.

    Article  Google Scholar 

  95. Wang, X. L.; Li, X. L.; Liang, X. Y.; Liang, J. Y.; Zhang, C.; Yang, J.; Wang, C.; Kong, D. L.; Sun, H. F. ROS-responsive capsules engineered from green tea polyphenol-metal networks for anticancer drug delivery. J. Mater. Chem. B 2018, 6, 1000–1010.

    Article  CAS  Google Scholar 

  96. Lin, M. H.; Dai, Y.; **a, F.; Zhang, X. J. Advances in non-covalent crosslinked polymer micelles for biomedical applications. Mater. Sci. Eng. C 2021, 119, 111626.

    Article  CAS  Google Scholar 

  97. Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 2018, 118, 6844–6892.

    Article  CAS  Google Scholar 

  98. Zhao, Y.; He, Z. Y.; Gao, H.; Tang, H. Y.; He, J. H.; Guo, Q.; Zhang, W. L.; Liu, J. P. Fine tuning of core-shell structure of hyaluronic acid/cell-penetrating peptides/siRNA nanoparticles for enhanced gene delivery to macrophages in antiatherosclerotic therapy. Biomacromolecules 2018, 19, 2944–2956.

    Article  CAS  Google Scholar 

  99. Sim, T.; Kim, J. E.; Hoang, N. H.; Kang, J. K.; Lim, C.; Kim, D. S.; Lee, E. S.; Youn, Y. S.; Choi, H. G.; Han, H. K. et al. Development of a docetaxel micellar formulation using poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) with successful reconstitution for tumor targeted drug delivery. Drug Deliv. 2018, 25, 1362–1371.

    Article  CAS  Google Scholar 

  100. Ye, M. Z.; Zhao, Y.; Wang, Y. Y.; Zhao, M.; Yodsanit, N.; **e, R. S.; Andes, D.; Gong, S. Q. A dual-responsive antibiotic-loaded nanoparticle specifically binds pathogens and overcomes antimicrobial-resistant infections. Adv. Mater. 2021, 33, 2006772.

    Article  CAS  Google Scholar 

  101. Seto, A.; Kajiwara, R.; Song, J.; Shin, E.; Kim, B. S.; Kofujita, H.; Oishi, Y.; Shibasaki, Y. Preparation of glycoside polymer micelles with antioxidant polyphenolic cores using alkylated poly(arbutin)s. RSC Adv. 2019, 9, 7777–7785.

    Article  CAS  Google Scholar 

  102. Guo, Y. X.; Sun, Q.; Wu, F. G.; Dai, Y. L.; Chen, X. Y. Polyphenolcontaining nanoparticles: Synthesis, properties, and therapeutic delivery. Adv. Mater. 2021, 33, 2007356.

    Article  CAS  Google Scholar 

  103. Lu, Y.; Yue, Z. G.; **e, J. B.; Wang, W.; Zhu, H.; Zhang, E. S.; Cao, Z. Q. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat. Biomed. Eng. 2018, 2, 318–325.

    Article  CAS  Google Scholar 

  104. Gao, M.; Deng, J.; Liu, F.; Fan, A. P.; Wang, Y. J.; Wu, H. Y.; Ding, D.; Kong, D. L.; Wang, Z.; Peer, D. et al. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials 2019, 223, 119486.

    Article  CAS  Google Scholar 

  105. Liang, K.; Chung, J. E.; Gao, S. J.; Yongvongsoontorn, N.; Kurisawa, M. Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly(ethylene glycol)-green tea catechin conjugate for cancer therapy. Adv. Mater. 2018, 30, 1706963.

    Article  Google Scholar 

  106. Chen, X. Y.; Yi, Z.; Chen, G. C.; Ma, X. M.; Su, W.; Deng, Z. W.; Ma, L.; Tong, Q. L.; Ran, Y. Q.; Li, X. D. Carrier-enhanced photodynamic cancer therapy of self-assembled green tea polyphenol-based nanoformulations. ACS Sustainable Chem. Eng. 2020, 8, 16372–16384.

    Article  CAS  Google Scholar 

  107. Patel, A. R. Functional and engineered colloids from edible materials for emerging applications in designing the food of the future. Adv. Funct. Mater. 2020, 30, 1806809.

    Article  CAS  Google Scholar 

  108. Bae, K. H.; Tan, S.; Yamashita, A.; Ang, W. X.; Gao, S. J.; Wang, S.; Chung, J. E.; Kurisawa, M. Hyaluronic acid-green tea catechin micellar nanocomplexes: Fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity. Biomaterials 2017, 148, 41–53.

    Article  CAS  Google Scholar 

  109. Li, X. X.; Wang, X. Y.; Liu, Q. F.; Yan, J. J.; Pan, D. H.; Wang, L. Z.; Xu, Y. P.; Wang, F.; Liu, Y. H.; Li, X. T. et al. ROS-responsive boronate-stabilized polyphenol-poloxamer 188 assembled dexamethasone nanodrug for macrophage repolarization in osteoarthritis treatment. Adv. Healthc. Mater. 2021, 10, 2100883.

    Article  CAS  Google Scholar 

  110. Jiang, W.; Zhou, H.; Wang, Q.; Chen, Z. Q.; Dong, W.; Guo, Z. X.; Li, Y.; Zhao, W.; Zhan, M. X.; Wang, Y. C. et al. High drug loading and pH-responsive nanomedicines driven by dynamic boronate covalent chemistry for potent cancer immunotherapy. Nano Res. 2021, 14, 3913–3920.

    Article  CAS  Google Scholar 

  111. Wang, X. Y.; Yan, J. J.; Wang, L. Z.; Pan, D. H.; Yang, R. L.; Xu, Y. P.; Sheng, J.; Huang, Q. H.; Zhao, H. M.; Yang, M. Rational design of polyphenol-poloxamer nanovesicles for targeting inflammatory bowel disease therapy. Chem. Mater. 2018, 30, 4073–4080.

    Article  CAS  Google Scholar 

  112. Le, Z. C.; Chen, Y. T.; Han, H. H.; Tian, H. K.; Zhao, P. F.; Yang, C. B.; He, Z. Y.; Liu, L. X.; Leong, K. W.; Mao, H. Q. et al. Hydrogen-bonded tannic acid-based anticancer nanoparticle for enhancement of oral chemotherapy. ACS Appl. Mater. Interfaces 2018, 10, 42186–42197.

    Article  CAS  Google Scholar 

  113. Wang, X. Y.; Chen, Y. H.; Dahmani, F. Z.; Yin, L. F.; Zhou, J. P.; Yao, J. Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials 2014, 35, 7654–7665.

    Article  CAS  Google Scholar 

  114. Lomova, M. V.; Brichkina, A. I.; Kiryukhin, M. V.; Vasina, E. N.; Pavlov, A. M.; Gorin, D. A.; Sukhorukov, G. B.; Antipina, M. N. Multilayer capsules of bovine serum albumin and tannic acid for controlled release by enzymatic degradation. ACS Appl. Mater. Interfaces 2015, 7, 11732–11740.

    Article  CAS  Google Scholar 

  115. Jacobs, J.; Pavlović, D.; Prydderch, H.; Moradi, M. A.; Ibarboure, E.; Heuts, J. P. A.; Lecommandoux, S.; Heise, A. Polypeptide nanoparticles obtained from emulsion polymerization of amino acid N-carboxyanhydrides. J. Am. Chem. Soc. 2019, 141, 12522–12526.

    Article  CAS  Google Scholar 

  116. Cheng, M.; Dou, H. J. Nano-assemblies based on biomacromolecules to overcome cancer drug resistance. Polym. Int. 2021, 71, 371–378.

    Article  Google Scholar 

  117. Fei, Y.; Li, M. H.; Li, Y. N.; Wang, X.; Xue, C. C.; Wu, Z. S.; Xu, J. Y.; **azeng, Z. L.; Cai, K. Y.; Luo, Z. Hierarchical integration of degradable mesoporous silica nanoreservoirs and supramolecular dendrimer complex as a general-purpose tumor-targeted biomimetic nanoplatform for gene/small-molecule anticancer drug co-delivery. Nanoscale 2020, 12, 16102–16112.

    Article  CAS  Google Scholar 

  118. Mix, K. A.; Lomax, J. E.; Raines, R. T. Cytosolic delivery of proteins by bioreversible esterification. J. Am. Chem. Soc. 2017, 139, 14396–14398.

    Article  CAS  Google Scholar 

  119. Chang, H.; Lv, J.; Gao, X.; Wang, X.; Wang, H.; Chen, H.; He, X.; Li, L.; Cheng, Y. Y. Rational design of a polymer with robust efficacy for intracellular protein and peptide delivery. Nano Lett. 2017, 17, 1678–1684.

    Article  CAS  Google Scholar 

  120. Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J. Y.; Afonin, K. A.; Dobrovolskaia, M. A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Del. Rev. 2022, 180, 114079.

    Article  CAS  Google Scholar 

  121. Vardaxi, A.; Kafetzi, M.; Pispas, S. Polymeric nanostructures containing proteins and peptides for pharmaceutical applications. Polymers 2022, 14, 777.

    Article  CAS  Google Scholar 

  122. Lila, A. S. A.; Kiwada, H.; Ishida, T. The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage. J. Controlled Release 2013, 172, 38–47.

    Article  Google Scholar 

  123. He, H.; Chen, Y. B.; Li, Y. J.; Song, Z. Y.; Zhong, Y. N.; Zhu, R. Y.; Cheng, J. J.; Yin, L. C. Effective and selective anti-cancer protein delivery via all-functions-in-one nanocarriers coupled with visible light-responsive, reversible protein engineering. Adv. Funct. Mater. 2018, 28, 1706710.

    Article  Google Scholar 

  124. Costa, C.; Liu, Z. H.; Simões, S. I.; Correia, A.; Rahikkala, A.; Seitsonen, J.; Ruokolainen, J.; Aguiar-Ricardo, A.; Santos, H. A.; Corvo, M. L. One-step microfluidics production of enzyme-loaded liposomes for the treatment of inflammatory diseases. Colloids Surf. B. Biointerfaces 2021, 199, 111556.

    Article  CAS  Google Scholar 

  125. Li, H.; Somiya, M.; Kuroda, S. Enhancing antibody-dependent cellular phagocytosis by re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes. Biomaterials 2021, 268, 120601.

    Article  CAS  Google Scholar 

  126. Mittelheisser, V.; Coliat, P.; Moeglin, E.; Goepp, L.; Goetz, J. G.; Charbonnière, L. J.; Pivot, X.; Detappe, A. Optimal physicochemical properties of antibody-nanoparticle conjugates for improved tumor targeting. Adv. Mater., in press, https://doi.org/10.1002/adma.202110305.

  127. Lau, H. H.; Murney, R.; Yakovlev, N. L.; Novoselova, M. V.; Lim, S. H.; Roy, N.; Singh, H.; Sukhorukov, G. B.; Haigh, B.; Kiryukhin, M. V. Protein-tannic acid multilayer films: A multifunctional material for microencapsulation of food-derived bioactives. J. Colloid Interface Sci. 2017, 505, 332–340.

    Article  CAS  Google Scholar 

  128. Qi, Y. T.; Li, J. R.; Nie, Q.; Gao, M. J.; Yang, Q. H.; Li, Z. M.; Li, Q.; Han, S. L.; Ding, J.; Li, Y. Q. et al. Polyphenol-assisted facile assembly of bioactive nanoparticles for targeted therapy of heart diseases. Biomaterials 2021, 275, 120952.

    Article  CAS  Google Scholar 

  129. **e, L. Y.; Wehling, R. L.; Ciftci, O.; Zhang, Y. Formation of complexes between tannic acid with bovine serum albumin, egg ovalbumin and bovine beta-lactoglobulin. Food Res. Int. 2017, 102, 195–202.

    Article  CAS  Google Scholar 

  130. Luo, R. F.; Lin, M. S.; Zhang, C.; Shi, J. F.; Zhang, S. Y.; Chen, Q. Y.; Hu, Y. C.; Zhang, M. Y.; Zhang, J. M.; Gao, F. Genipin-crosslinked human serum albumin coating using a tannic acid layer for enhanced oral administration of curcumin in the treatment of ulcerative colitis. Food Chem. 2020, 330, 127241.

    Article  CAS  Google Scholar 

  131. Honda, Y.; Nomoto, T.; Matsui, M.; Takemoto, H.; Kaihara, Y.; Miura, Y.; Nishiyama, N. Sequential self-assembly using tannic acid and phenylboronic acid-modified copolymers for potential protein delivery. Biomacromolecules 2020, 21, 3826–3835.

    Article  CAS  Google Scholar 

  132. Liu, C. Y.; Shen, W. W.; Li, B. N.; Li, T. F.; Chang, H.; Cheng, Y. Y. Natural polyphenols augment cytosolic protein delivery by a functional polymer. Chem. Mater. 2019, 31, 1956–1965.

    Article  CAS  Google Scholar 

  133. Han, Y. Y.; Zhou, J. J.; Hu, Y. J.; Lin, Z. X.; Ma, Y. T.; Richardson, J. J.; Caruso, F. Polyphenol-based nanoparticles for intracellular protein deliveryviacompeting supramolecular interactions. ACS Nano 2020, 14, 12972–12981.

    Article  CAS  Google Scholar 

  134. Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discovery 2020, 19, 277–289.

    Article  CAS  Google Scholar 

  135. Wu, X.; Farooq, M. A.; Li, T. T.; Geng, T. J.; Kutoka, P. T.; Wang, B. Cationic chitosan-modified silica nanoparticles for oral delivery of protein vaccine. J. Biomed. Mater. Res., Part A 2021, 109, 2111–2119.

    Article  CAS  Google Scholar 

  136. Chang, K. W.; Liu, Z. H.; Fang, X. F.; Chen, H. B.; Men, X. J.; Yuan, Y.; Sun, K.; Zhang, X. J.; Yuan, Z.; Wu, C. F. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide. Nano Lett. 2017, 17, 4323–4329.

    Article  CAS  Google Scholar 

  137. Fu, L. H.; Qi, C.; Lin, J.; Huang, P. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev. 2018, 47, 6454–6472.

    Article  CAS  Google Scholar 

  138. Dai, Y. L.; Cheng, S. Y.; Wang, Z. L.; Zhang, R. L.; Yang, Z.; Wang, J. J.; Yung, B. C.; Wang, Z. T.; Jacobson, O.; Xu, C. et al. Hypochlorous acid promoted platinum drug chemotherapy by myeloperoxidase-encapsulated therapeutic metal phenolic nanoparticles. ACS Nano 2018, 12, 455–463.

    Article  CAS  Google Scholar 

  139. Zhao, W. G.; Hu, J.; Gao, W. P. Glucose oxidase-polymer nanogels for synergistic cancer-starving and oxidation therapy. ACS Appl. Mater. Interfaces 2017, 9, 23528–23535.

    Article  CAS  Google Scholar 

  140. Zhang, L.; Wan, S. S.; Li, C. X.; Xu, L.; Cheng, H.; Zhang, X. Z. An adenosine triphosphate-responsive autocatalytic fenton nanoparticle for tumor ablation with self-supplied H2O2 and Acceleration of Fe(III)/Fe(II) conversion. Nano Lett. 2018, 18, 7609–7618.

    Article  CAS  Google Scholar 

  141. Guo, Y. X.; Jia, H. R.; Zhang, X. D.; Zhang, X. P.; Sun, Q.; Wang, S. Z.; Zhao, J.; Wu, F. G. A glucose/oxygen-exhausting nanoreactor for starvation-and hypoxia-activated sustainable and cascade chemo-chemodynamic therapy. Small 2020, 16, 2000897.

    Article  CAS  Google Scholar 

  142. Chung, J. E.; Tan, S. S.; Gao, S. J.; Yongvongsoontorn, N.; Kim, S. H.; Lee, J. H.; Choi, H. S.; Yano, H.; Zhuo, L.; Kurisawa, M. et al. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat. Nanotechnol. 2014, 9, 907–912.

    Article  CAS  Google Scholar 

  143. Liang, K.; Ng, S.; Lee, F.; Lim, J.; Chung, J. E.; Lee, S. S.; Kurisawa, M. Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels. Acta Biomater. 2016, 33, 142–152.

    Article  CAS  Google Scholar 

  144. Ge, G.; Guo, W. X.; Zheng, J. B.; Zhao, M. M.; Sun, W. Z. Effect of interaction between tea polyphenols with soymilk protein on inactivation of soybean trypsin inhibitor. Food Hydrocolloids 2021, 111, 106177.

    Article  CAS  Google Scholar 

  145. Skrt, M.; Benedik, E.; Podlipnik, C.; Ulrih, N. P. Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking. Food Chem. 2012, 135, 2418–2424.

    Article  CAS  Google Scholar 

  146. Stojadinovic, M.; Radosavljevic, J.; Ognjenovic, J.; Vesic, J.; Prodic, I.; Stanic-Vucinic, D.; Velickovic, T. C. Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed. Food Chem. 2013, 136, 1263–1271.

    Article  CAS  Google Scholar 

  147. Mehranfar, F.; Bordbar, A. K.; Parastar, H. A combined spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of quercetin with β-casein nanoparticles. J. Photochem. Photobiol. B:Biol. 2013, 127, 100–107.

    Article  CAS  Google Scholar 

  148. Wan, Z. L.; Wang, J. M.; Wang, L. Y.; Yuan, Y.; Yang, X. Q. Complexation of resveratrol with soy protein and its improvement on oxidative stability of corn oil/water emulsions. Food Chem. 2014, 161, 324–331.

    Article  CAS  Google Scholar 

  149. Xu, J. H.; Hao, M. H.; Sun, Q. F.; Tang, L. Comparative studies of interaction of β-lactoglobulin with three polyphenols. Int. J. Biol. Macromol. 2019, 136, 804–812.

    Article  CAS  Google Scholar 

  150. Jia, J. J.; Gao, X.; Hao, M. H.; Tang, L. Comparison of binding interaction between β-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods. Food Chem. 2017, 228, 143–151.

    Article  CAS  Google Scholar 

  151. Ren, G. Y.; Sun, H.; Guo, J. Y.; Fan, J. L.; Li, G.; Xu, S. W. Molecular mechanism of the interaction between resveratrol and trypsin via spectroscopy and molecular docking. Food Funct. 2019, 10, 3291–3302.

    Article  CAS  Google Scholar 

  152. Yu, Q.; Fan, L. P.; Duan, Z. H. Five individual polyphenols as tyrosinase inhibitors: Inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chem. 2019, 297, 124910.

    Article  CAS  Google Scholar 

  153. Meyerowitz, J. G.; Robertson, M. J.; Barros-Álvarez, X.; Panova, O.; Nwokonko, R. M.; Gao, Y.; Skiniotis, G. The oxytocin signaling complex reveals a molecular switch for cation dependence. Nat. Struct. Mol. Biol. 2022, 29, 274–281.

    Article  CAS  Google Scholar 

  154. Yang, Q. M.; Zhou, F.; Tang, X. L.; Wang, J. L.; Feng, H.; Jiang, W.; **, L. F.; Jiang, N.; Yuan, Y. L.; Han, J. et al. Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents. Eur. J. Med. Chem. 2022, 233, 114214.

    Article  CAS  Google Scholar 

  155. Zhang, Y. J.; Zhang, H. R.; Ghosh, D.; Williams III, R. O. Just how prevalent are peptide therapeutic products? A critical review. Int. J. Pharm. 2020, 587, 119491.

    Article  CAS  Google Scholar 

  156. Ilangala, A. B.; Lechanteur, A.; Fillet, M.; Piel, G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur. J. Pharm. Biopharm. 2021, 167, 140–158.

    Article  CAS  Google Scholar 

  157. Chen, W.; Wang, G. H.; Yung, B. C.; Liu, G.; Qian, Z. Y.; Chen, X. Y. Long-acting release formulation of exendin-4 based on biomimetic mineralization for type 2 diabetes therapy. ACS Nano 2017, 11, 5062–5069.

    Article  CAS  Google Scholar 

  158. Weber, F.; Liao, W. C.; Barrantes, A.; Edén, M.; Tiainen, H. Silicate-phenolic networks: Coordination-mediated deposition of bioinspired tannic acid coatings. Chem. —Eur. J. 2019, 55, 9870–9874.

    Article  Google Scholar 

  159. He, Z. Y.; Hu, Y. Z.; Gui, Z. Z.; Zhou, Y.; Nie, T. Q.; Zhu, J. C.; Liu, Z. J.; Chen, K. T.; Liu, L. X.; Leong, K. W. et al. Sustained release of exendin-4 from tannic acid/Fe (III) nanoparticles prolongs blood glycemic control in a mouse model of type II diabetes. J. Controlled Release 2019, 301, 119–128.

    Article  CAS  Google Scholar 

  160. He, Z. Y.; Nie, T. Q.; Hu, Y. Z.; Zhou, Y.; Zhu, J. C.; Liu, Z. J.; Liu, L. X.; Leong, K. W.; Chen, Y. M.; Mao, H. Q. A polyphenolmetal nanoparticle platform for tunable release of liraglutide to improve blood glycemic control and reduce cardiovascular complications in a mouse model of type II diabetes. J. Controlled Release 2020, 318, 86–97.

    Article  CAS  Google Scholar 

  161. Qiao, H. Z.; Fang, D.; Zhang, L.; Gu, X. C.; Lu, Y.; Sun, M. J.; Sun, C. M.; **, Q. N.; Li, J. S.; Chen, Z. P. et al. Nanostructured peptidotoxins as natural pro-oxidants induced cancer cell death via amplification of oxidative stress. ACS Appl. Mater. Interfaces 2018, 10, 4569–4581.

    Article  CAS  Google Scholar 

  162. Braendstrup, P.; Levine, B. L.; Ruella, M. The long road to the first FDA-approved gene therapy: Chimeric antigen receptor T cells targeting CD19. Cytotherapy 2020, 22, 57–69.

    Article  CAS  Google Scholar 

  163. Wang, D.; Tai, P. W. L.; Gao, G. P. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discovery 2019, 18, 358–378.

    Article  CAS  Google Scholar 

  164. Cui, J. J.; Qin, L. F.; Zhang, J. W.; Abrahimi, P.; Li, H.; Li, G. X.; Tietjen, G. T.; Tellides, G.; Pober, J. S.; Saltzman, W. M. Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells. Nat. Commun. 2017, 8, 191.

    Article  Google Scholar 

  165. Shen, W. W.; Wang, R. J.; Fan, Q. Q.; Li, Y. W.; Cheng, Y. Y. Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Ther. 2020, 27, 383–391.

    Article  CAS  Google Scholar 

  166. Chanphai, P.; Tajmir-Riahi, H. A. Structural dynamics of DNA binding to tea catechins. Int. J. Biol. Macromol. 2019, 125, 238–243.

    Article  CAS  Google Scholar 

  167. Dhandapani, R. K.; Gurusamy, D.; Palli, S. R. Development of Catechin, Poly-L-lysine, and double-stranded RNA nanoparticles. ACS Appl. Bio Mater. 2021, 4, 4310–4318.

    Article  CAS  Google Scholar 

  168. Shen, W. W.; Wang, Q. W.; Shen, Y.; Gao, X.; Li, L.; Yan, Y.; Wang, H.; Cheng, Y. Y. Green tea catechin dramatically promotes RNAi mediated by low-molecular-weight polymers. ACS Cent. Sci. 2018, 4, 1326–1333.

    Article  CAS  Google Scholar 

  169. Gao, B.; Zhang, Q. P.; Wang, X. Y.; Wang, M. Y.; Ren, X. K.; Guo, J. T.; **a, S. H.; Zhang, W. C.; Feng, Y. K. A “eelf-accelerating endosomal escape” siRNA delivery nanosystem for significantly suppressing hyperplasia via blocking the ERK2 pathway. Biomater. Sci. 2019, 7, 3307–3319.

    Article  CAS  Google Scholar 

  170. Fan, Q. Q.; Yang, Z.; Li, Y. H.; Cheng, Y. Y.; Li, Y. W. Polycatechol mediated small interfering RNA delivery for the treatment of ulcerative colitis. Adv. Funct. Mater. 2021, 31, 2101646.

    Article  CAS  Google Scholar 

  171. Liang, K.; Bae, K. H.; Lee, F.; Xu, K. M.; Chung, J. E.; Gao, S. J.; Kurisawa, M. Self-assembled ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates for targeted gene delivery. J. Controlled Release 2016, 226, 205–216.

    Article  CAS  Google Scholar 

  172. Beetch, M.; Harandi-Zadeh, S.; Shen, K.; Lubecka, K.; Kitts, D. D.; O’Hagan, H. M.; Stefanska, B. Dietary antioxidants remodel DNA methylation patterns in chronic disease. Br. J. Pharmacol. 2020, 177, 1382–1408.

    Article  CAS  Google Scholar 

  173. Zan, R.; Wang, H.; Cai, W. J.; Ni, J. H.; Luthringer-Feyerabend, B. J. C.; Wang, W. H.; Peng, H. Z.; Ji, W. P.; Yan, J.; **a, J. X. et al. Controlled release of hydrogen by implantation of magnesium induces P53-mediated tumor cells apoptosis. Bioact. Mater. 2022, 9, 385–396.

    Article  CAS  Google Scholar 

  174. Chen, Z. H.; Yu, T.; Zhou, B. F.; Wei, J. H.; Fang, Y.; Lu, J.; Guo, L.; Chen, W.; Liu, Z. P.; Luo, J. H. Mg(II)-Catechin nanoparticles delivering siRNA targeting EIF5A2 inhibit bladder cancer cell growth in vitro and in vivo. Biomaterials 2016, 81, 125–134.

    Article  CAS  Google Scholar 

  175. Ding, J.; Liang, T. X. Z.; Min, Q. H.; Jiang, L. P.; Zhu, J. J. “Stealth and fully-laden” drug carriers:Self-assembled nanogels encapsulated with epigallocatechin gallate and siRNA for drug-resistant breast cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 9938–9948.

    Article  CAS  Google Scholar 

  176. Farina, M.; Alexander, J. F.; Thekkedath, U.; Ferrari, M.; Grattoni, A. Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Adv. Drug Del. Rev. 2019, 139, 92–115.

    Article  CAS  Google Scholar 

  177. Zhu, K. X.; Yu, Y. R.; Cheng, Y.; Tian, C. H.; Zhao, G.; Zhao, Y. J. All-aqueous-phase microfluidics for cell encapsulation. ACS Appl. Mater. Interfaces 2019, 11, 4826–4832.

    Article  CAS  Google Scholar 

  178. Yang, L.; Liu, Y. X.; Sun, L. Y.; Zhao, C.; Chen, G. P.; Zhao, Y. J. Biomass microcapsules with stem cell encapsulation for bone repair. Nanomicro Lett. 2022, 14, 4.

    Article  Google Scholar 

  179. Wang, W. S.; Wang, S. T. Cell-based biocomposite engineering directed by polymers. Lab Chip 2022, 22, 1042–1067.

    Article  CAS  Google Scholar 

  180. Marfil-Garza, B. A.; Polishevska, K.; Pepper, A. R.; Korbutt, G. S. Current state and evidence of cellular encapsulation strategies in type 1 diabetes. Compr. Physiol. 2020, 10, 839–878.

    Article  Google Scholar 

  181. An, D.; Chiu, A.; Flanders, J. A.; Song, W.; Shou, D. H.; Lu, Y. C.; Grunnet, L. G.; Winkel, L.; Ingvorsen, C.; Christophersen, N. S. et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc. Natl. Acad. Sci. USA 2018, 115, E263–E272.

    Article  CAS  Google Scholar 

  182. Kozlovskaya, V.; Zavgorodnya, O.; Chen, Y.; Ellis, K.; Tse, H. M.; Cui, W. X.; Thompson, J. A.; Kharlampieva, E. Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells. Adv. Funct. Mater. 2012, 22, 3389–3398.

    Article  CAS  Google Scholar 

  183. Pham-Hua, D.; Padgett, L. E.; Xue, B.; Anderson, B.; Zeiger, M.; Barra, J. M.; Bethea, M.; Hunter, C. S.; Kozlovskaya, V.; Kharlampieva, E. et al. Islet encapsulation with polyphenol coatings decreases pro-inflammatory chemokine synthesis and T cell trafficking. Biomaterials 2017, 128, 19–32.

    Article  CAS  Google Scholar 

  184. Chen, W.; Yang, Z.; Fu, X. C.; Du, L. P.; Tian, Y. L.; Wang, J.; Cai, W.; Guo, P.; Wu, C. S. Synthesis of a removable cytoprotective exoskeleton by tea polyphenol complexes for living cell encapsulation. ACS Biomater. Sci. Eng. 2021, 7, 764–771.

    Article  CAS  Google Scholar 

  185. Park, J. H.; Kim, K.; Lee, J.; Choi, J. Y.; Hong, D.; Yang, S. H.; Caruso, F.; Lee, Y.; Choi, I. S. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation. Angew. Chem., Int. Ed. 2014, 53, 12420–1225.

    Article  CAS  Google Scholar 

  186. Oliva, N.; Conde, J.; Wang, K.; Artzi, N. Designing hydrogels for on-demand therapy. Acc. Chem. Res. 2017, 50, 669–679.

    Article  CAS  Google Scholar 

  187. Chen, T.; Chen, Y. J.; Rehman, H. U.; Chen, Z.; Yang, Z.; Wang, M.; Li, H.; Liu, H. Z. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl. Mater. Interfaces 2018, 10, 33523–33531.

    Article  CAS  Google Scholar 

  188. Dimatteo, R.; Darling, N. J.; Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Del. Rev. 2018, 127, 167–184.

    Article  CAS  Google Scholar 

  189. Sharma, S.; Kumar, A.; Deepak; Kumar, R.; Rana, N. K.; Koch, B. Development of a novel chitosan based biocompatible and self-healing hydrogel for controlled release of hydrophilic drug. Int. J. Biol. Macromol. 2018, 116, 37–44.

    Article  CAS  Google Scholar 

  190. Huang, Z. J.; Delparastan, P.; Burch, P.; Cheng, J.; Cao, Y.; Messersmith, P. B. Injectable dynamic covalent hydrogels of boronic acid polymers cross-linked by bioactive plant-derived polyphenols. Biomater. Sci. 2018, 6, 2487–2495.

    Article  CAS  Google Scholar 

  191. Zhou, L.; Fan, L.; Yi, X.; Zhou, Z. N.; Liu, C.; Fu, R. M.; Dai, C.; Wang, Z. G.; Chen, X. X.; Yu, P. et al. Soft conducting polymer hydrogels cross-linked and doped by tannic acid for spinal cord injury repair. ACS Nano 2018, 12, 10957–10967.

    Article  CAS  Google Scholar 

  192. Kim, S. H.; Kim, K.; Kim, B. S.; An, Y. H.; Lee, U. J.; Lee, S. H.; Kim, S. L.; Kim, B. G.; Hwang, N. S. Fabrication of polyphenolincorporated anti-inflammatory hydrogel via high-affinity enzymatic crosslinking for wet tissue adhesion. Biomaterials 2020, 242, 119905.

    Article  CAS  Google Scholar 

  193. Kim, B. S.; Kim, S. H.; Kim, K.; An, Y. H.; So, K. H.; Kim, B. G.; Hwang, N. S. Enzyme-mediated one-pot synthesis of hydrogel with the polyphenol cross-linker for skin regeneration. Mater. Today Bio 2020, 8, 100079.

    Article  CAS  Google Scholar 

  194. Wang, T. Y.; Fan, Q. Q.; Hong, J. X.; Chen, Z.; Zhou, X. J.; Zhang, J. H.; Dai, Y. Q.; Jiang, H.; Gu, Z. P.; Cheng, Y. Y. et al. Therapeutic nanoparticles from grape seed for modulating oxidative stress. Small 2021, 17, 2102485.

    Article  CAS  Google Scholar 

  195. Yang, P.; Zhang, J. H.; **ang, S. Y.; **, Z. K.; Zhu, F.; Wang, T. Y.; Duan, G. G.; Liu, X. H.; Gu, Z. P.; Li, Y. W. Green nanoparticle scavengers against oxidative stress. ACS Appl. Mater. Interfaces 2021, 13, 39126–39134.

    Article  CAS  Google Scholar 

  196. Hu, B.; Shen, Y.; Adamcik, J.; Fischer, P.; Schneider, M.; Loessner, M. J.; Mezzenga, R. Polyphenol-binding amyloid fibrils self-assemble into reversible hydrogels with antibacterial activity. ACS Nano 2018, 12, 3385–3396.

    Article  CAS  Google Scholar 

  197. Deng, Z. X.; Guo, Y.; Zhao, X.; Ma, P. X.; Guo, B. L. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions. Chem. Mater. 2018, 30, 1729–1742.

    Article  CAS  Google Scholar 

  198. Hu, J. J.; Hu, Q. Y.; He, X.; Liu, C. X.; Kong, Y. L.; Cheng, Y. Y.; Zhang, Y. D. Stimuli-responsive hydrogels with antibacterial activity assembled from guanosine, aminoglycoside, and a bifunctional anchor. Adv. Healthc. Mater. 2020, 9, 1901329.

    Article  CAS  Google Scholar 

  199. Ninan, N.; Forget, A.; Shastri, V. P.; Voelcker, N. H.; Blencowe, A. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl. Mater. Interfaces 2016, 8, 28511–28521.

    Article  CAS  Google Scholar 

  200. Xu, Z. J.; Liu, G. T.; Li, Q.; Wu, J. A novel hydrogel with glucose-responsive hyperglycemia regulation and antioxidant activity for enhanced diabetic wound repair. Nano Res., in press, https://doi.org/10.1007/s12274-022-4192-y.

  201. Zheng, H. Y.; Zuo, B. Q. Functional silk fibroin hydrogels: Preparation, properties and applications. J. Mater. Chem. B 2021, 9, 1238–1258.

    Article  CAS  Google Scholar 

  202. Jeon, Y. D.; Lee, J. H.; Lee, Y. M.; Kim, D. K. Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model. Biomed. Pharmacother. 2020, 124, 109847.

    Article  CAS  Google Scholar 

  203. Zhong, Y. J.; Zhao, J. C.; Dai, T. T.; McClements, D. J.; Liu, C. M. The effect of whey protein-puerarin interactions on the formation and performance of protein hydrogels. Food Hydrocolloids 2021, 113, 106444.

    Article  CAS  Google Scholar 

  204. Shin, M.; Ryu, J. H.; Park, J. P.; Kim, K.; Yang, J. W.; Lee, H. DNA/Tannic acid hybrid gel exhibiting biodegradability, extensibility, tissue adhesiveness, and hemostatic ability. Adv. Funct. Mater. 2015, 25, 1270–1278.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82003673) and National Key R&D Program of China (Nos. 2019YFC0312101 and 2019YFC0312102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangmin Yu, Jun Wu or Zhiyu He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, J., Zhao, Y. et al. Innovations and challenges of polyphenol-based smart drug delivery systems. Nano Res. 15, 8156–8184 (2022). https://doi.org/10.1007/s12274-022-4430-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4430-3

Keywords

Navigation