Log in

Alloy-buffer-controlled van der Waals epitaxial growth of aligned tellurene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Group-VI elemental two-dimensional (2D) materials (e.g., tellurene (Te)) have unique crystalline structures and extraordinarily physical properties. However, it still remains a great challenge to controllably grow 2D Te with good repeatability, uniformity, and highly aligned orientation using vapor growth method. Here, we design a Cu foil-assisted alloy-buffer-controlled growth method to epitaxially grow aligned single-crystalline 2D Te on an insulating mica substrate. The in-situ formation of Cu−Te alloy plays a key role on 2D Te growth, alleviating the spatial and temporal non-uniformity of precursor in conventional vapor deposition process. Through transmission electron microscopy (TEM) analysis combined with theoretical calculations, we unveil that the alignment growth of Te in the [110] direction is along the [600] direction of mica, owing to the small lattice mismatch (0.15%) and strong binding strength. This work presents a method to grow aligned high-quality 2D Te in a controllable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, Z. Y.; Huang, Y.; Duan, X. F. Van der Waals thin-film electronics. Nat. Electron. 2019, 2, 378–388.

    Article  Google Scholar 

  2. Liu, C.; Wang, L.; Qi, J. J.; Liu, K. H. Designed growth of large-size 2D single crystals. Adv. Mater. 2020, 32, 2000046.

    Article  CAS  Google Scholar 

  3. Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252.

    Article  CAS  Google Scholar 

  4. Zhang, Y.; Yao, Y. Y.; Sendeku, M. G.; Yin, L.; Zhan, X. Y.; Wang, F.; Wang, Z. X.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694.

    Article  CAS  Google Scholar 

  5. Yang, Y.; Zhang, K. X.; Zhang, L. B.; Hong, G.; Chen, C.; **g, H. M.; Lu, J. B.; Wang, P.; Chen X. S.; Wang, L. et al. Controllable growth of type-II Dirac semimetal PtTe2 atomic layer on Au substrate for sensitive room temperature terahertz photodetection. InforMat 2021, 3, 705–715.

    CAS  Google Scholar 

  6. Huang, L.; Hu, Z. M.; **, H. R.; Wu, J. B.; Liu, K. S.; Xu, Z. H.; Wan, J.; Zhou, H.; Duan, J. J.; Hu, B. et al. Salt-assisted synthesis of 2D materials. Adv. Funct. Mater. 2020, 30, 1908486.

    Article  CAS  Google Scholar 

  7. **g, X.; Illarionov, Y.; Yalon, E.; Zhou, P.; Grasser, T.; Shi, Y. Y.; Lanza, M. Engineering field effect transistors with 2D semiconducting channels: Status and prospects. Adv. Funct. Mater. 2020, 30, 1901971.

    Article  CAS  Google Scholar 

  8. Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554.

    Article  Google Scholar 

  9. Li, X. B.; Chen, C.; Yang, Y.; Lei, Z. B.; Xu, H. 2D Re-based transition metal chalcogenides: Progress, challenges, and opportunities. Adv. Sci. 2020, 7, 2002320.

    Article  CAS  Google Scholar 

  10. Lin, Z. Y.; Wang, C.; Chai, Y. Emerging group-VI elemental 2D materials: Preparations, properties, and device applications. Small 2020, 16, 2003319.

    Article  CAS  Google Scholar 

  11. Qin, J. K.; Liao, P. Y.; Si, M. W.; Gao, S. Y.; Qiu, G.; Jian, J.; Wang, Q. X.; Zhang, S. Q.; Huang, S. Y.; Charnas, A. et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat. Electron. 2020, 3, 141–147.

    Article  CAS  Google Scholar 

  12. Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. X.; Liu, Y. Y.; Du, Y. C.; Goddard III, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236.

    Article  Google Scholar 

  13. Zhao, C. S.; Tan, C. L.; Lien, D. H.; Song, X. H.; Amani, M.; Hettick, M.; Nyein, H. Y. Y.; Yuan, Z.; Li, L.; Scott, M. C. et al. Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol. 2020, 15, 53–58.

    Article  CAS  Google Scholar 

  14. Qin, J. K.; Qiu, G.; Jian, J.; Zhou, H.; Yang, L. M.; Charnas, A.; Zemlyanov, D. Y.; Xu, C. Y.; Xu, X. F.; Wu, W. Z. et al. Controlled growth of a large-size 2D Selenium nanosheet and its electronic and optoelectronic applications. ACS Nano 2017, 11, 10222–10229.

    Article  CAS  Google Scholar 

  15. Qin, J. K.; Qiu, G.; He, W.; Jian, J.; Si, M. W.; Duan, Y. Q.; Charnas, A.; Zemlyanov, D. Y.; Wang, H. Y.; Shao, W. Z. et al. Epitaxial growth of 1D Atomic chain based Se nanoplates on monolayer ReS2 for high-performance photodetectors. Adv. Funct. Mater. 2018, 28, 1806254.

    Article  Google Scholar 

  16. **ng, C. Y.; **e, Z. J.; Liang, Z. M.; Liang, W. Y.; Fan, T. J.; Ponraj, J. S.; Dhanabalan, S. C.; Fan, D. Y.; Zhang, H. 2D nonlayered selenium nanosheets: Facile synthesis, photoluminescence, and ultrafast photonics. Adv. Opt. Mater. 2017, 5, 1700884.

    Article  Google Scholar 

  17. Qin, J. K.; Zhou, F. C.; Wang, J. L.; Chen, J. W.; Wang, C.; Guo, X. Y.; Zhao, S. X.; Pei, Y.; Zhen, L.; Ye, P. D. et al. Anisotropic signal processing with trigonal selenium nanosheet synaptic transistors. ACS Nano 2020, 14, 10018–10026.

    Article  CAS  Google Scholar 

  18. Qin, J. K.; Wang, C.; Zhen, L.; Li, L. J.; Xu, C. Y.; Chai, Y. Van der Waals heterostructures with one-dimensional atomic crystals. Prog. Mater. Sci. 2021, 122, 100856.

    Article  CAS  Google Scholar 

  19. Qiao, J. S.; Pan, Y. H.; Yang, F.; Wang, C.; Chai, Y.; Ji, W. Few-layer Tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull. 2018, 63, 159–168.

    Article  CAS  Google Scholar 

  20. Du, Y. C.; Qiu, G.; Wang, Y. X.; Si, M. W.; Xu, X. F.; Wu, W. Z.; Ye, P. D. One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 2017, 17, 3965–3973.

    Article  CAS  Google Scholar 

  21. Zhao, C. S.; Batiz, H.; Yasar, B.; Kim, H.; Ji, W. B.; Scott, M. C.; Chrzan, D. C.; Javey, A. Tellurium single-crystal arrays by low-temperature evaporation and crystallization. Adv. Mater. 2021, 33, 2100860.

    Article  CAS  Google Scholar 

  22. Chen, J. Y.; Zhao, X. X.; Tan, S. J. R.; Xu, H.; Wu, B.; Liu, B.; Fu, D. Y.; Fu, W.; Geng, D. H.; Liu, Y. P. et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 2017, 139, 1073–1076.

    Article  CAS  Google Scholar 

  23. Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

    Article  CAS  Google Scholar 

  24. Lin, Z. Y.; Zhao, Y. D.; Zhou, C. J.; Zhong, R.; Wang, X. S.; Tsang, Y. H.; Chai, Y. Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 2016, 5, 18596.

    Article  Google Scholar 

  25. Lim, H. E.; Irisawa, T.; Okada, N.; Okada, M.; Endo, T.; Nakanishi, Y.; Maniwa, Y.; Miyata, Y. Monolayer MoS2 growth at the Au−SiO2 interface. Nanoscale 2019, 11, 19700–19704.

    Article  CAS  Google Scholar 

  26. Yang, P. F.; Zhang, S. Q.; Pan, S. Y.; Tang, B.; Liang, Y.; Zhao, X. X.; Zhang, Z. P.; Shi, J. P.; Huan, Y. H.; Shi, Y. P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au (111). ACS Nano 2020, 14, 5036–5045.

    Article  CAS  Google Scholar 

  27. Momeni, K.; Ji, Y. Z.; Zhang, K. H.; Robinson, J. A.; Chen, L. Q. Multiscale framework for simulation-guided growth of 2D materials. npj 2D Mater. Appl. 2018, 2, 27.

    Article  Google Scholar 

  28. Zhou, X. S.; Wu, Y. Y.; Yang, X. G.; Huang, C. W. Numerical analysis of an inline metal-organic chemical vapour deposition process based on sliding-mesh modelling. Coatings 2020, 10, 1198.

    Article  CAS  Google Scholar 

  29. Zhang, F.; Momeni, K.; AlSaud, M. A.; Azizi, A.; Hainey, M. F.; Redwing, J. M.; Chen, L. Q.; Alem, N. Controlled synthesis of 2D transition metal dichalcogenides: From vertical to planar MoS2. 2D Mater. 2017, 4, 025029.

    Article  Google Scholar 

  30. Abbas, H. G.; Hahn, J. R. Crystallization mechanism of liquid tellurium from classical molecular dynamics simulation. Mater. Chem. Phys. 2020, 240, 122235.

    Article  CAS  Google Scholar 

  31. Chandrasekaran, S.; Basak, T.; Ramanathan, S. Experimental and theoretical investigation on microwave melting of metals. J. Mater. Process. Technol. 2011, 211, 482–487.

    Article  CAS  Google Scholar 

  32. Zhang, X.; Jiang, J. Z.; Suleiman, A. A.; **, B.; Hu, X. Z.; Zhou, X.; Zhai, T. Y. Hydrogen-assisted growth of ultrathin Te flakes with giant gate-dependent photoresponse. Adv. Funct. Mater. 2019, 29, 1906585.

    Article  CAS  Google Scholar 

  33. Pashinkin, A. S.; Fedorov, V. A. Phase equilibria in the Cu−Te system. Inorg. Mater. 2003, 39, 539–554.

    Article  CAS  Google Scholar 

  34. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  35. Ghoshal, D.; Shang, H. Z.; Sun, X.; Wen, X. X.; Chen, D. X.; Wang, T. M.; Lu, Z. H.; Gupta, T.; Efstathiadis, H.; West, D. et al. Orientation-controlled large-area epitaxial PbI2 thin films with tunable optical properties. ACS Appl. Mater. Interfaces 2021, 13, 32450–32460.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Grant Council of Hong Kong (No. PolyU 152053/18E) and the Shenzhen Science and Technology Innovation Commission (No. JCYJ20180507183424383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Xu, C., Guo, X. et al. Alloy-buffer-controlled van der Waals epitaxial growth of aligned tellurene. Nano Res. 15, 5712–5718 (2022). https://doi.org/10.1007/s12274-022-4188-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4188-7

Keywords

Navigation