Log in

Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photodetectors and optoelectronic synapses are vital for construction of artificial visual perception system. However, the hardware implementations of optoelectronic-neuromorphic devices based on conventional architecture usually suffer from poor scalability, light response range, and limited functionalities. Here, large-scale flexible monolayer MoS2 devices integrating photodetectors and optoelectronic synapses over the entire visible spectrum in one device have been realized, which can be used in photodetection, optical communication, artificial visual perception system, and optical artificial neural network. By modulating gate voltages, we enable MoS2-based devices to be photodetectors and also optoelectronic synapses. Importantly, the MoS2-based optoelectronic synapses could implement many synaptic functions and neuromorphic characteristics, such as short-term memory (STM), long-term memory (LTM), paired-pulse facilitation (PPF), long-term potentiation (LTP)/long-term depression (LTD), and “learning-experience” behavior. Furthermore, an associative learning behavior (the classical conditioning Pavlov’s dog experiment) was emulated using paired stimulation of optical and voltage pulses. These results facilitate the development of MoS2-based multifunctional optoelectronic devices with a simple device structure, showing great potential for photodetection, optoelectronic neuromorphic computing, human visual systems mimicking, as well as wearable and implantable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leydecker, T.; Herder, M.; Pavlica, E.; Bratina, G.; Hecht, S.; Orgiu, E.; Samori, P. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend, Nat. Nanotechnol. 2016, 11, 769–775.

    Article  CAS  Google Scholar 

  2. Tan, H. W.; Liu, G.; Yang, H. L.; Yi, X. H.; Pan, L.; Shang, J.; Long, S. B.; Liu, M.; Wu, Y. H.; Li, R. W. Light-gated memristor with integrated logic and memory functions, ACS Nano 2017, 11, 11298–11305.

    Article  CAS  Google Scholar 

  3. Tan, H. W.; Liu, G.; Zhu, X. J.; Yang, H. L.; Chen, B.; Chen, X. X.; Shang, J.; Lu, W. D.; Wu, Y. H.; Li, R. W. An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions, Adv. Mater. 2015, 27, 2797–2803.

    Article  CAS  Google Scholar 

  4. Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors, Nat. Nanotechnol. 2019, 14, 776–782.

    Article  CAS  Google Scholar 

  5. Gu, L. L.; Poddar, S.; Lin, Y. J.; Long, Z. H.; Zhang, D. Q.; Zhang, Q. P.; Shu, L.; Qiu, X.; Kam, M.; Javey, A. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina, Nature 2020, 581, 278–282.

    Article  CAS  Google Scholar 

  6. Wang, H. L.; Liu, H. T.; Zhao, Q.; Ni, Z. J.; Zou, Y.; Yang, J.; Wang, L. F.; Sun, Y. Q.; Guo, Y. L.; Hu, W. P. et al. A retina-like dual band organic photosensor array for filter-free near-infrared-to-memory operations, Adv. Mater. 2017, 29, 1701772.

    Article  Google Scholar 

  7. Chen, S.; Lou, Z.; Chen, D.; Shen, G. Z. An artificial flexible visual memory system based on an UV-motivated memristor, Adv. Mater. 2018, 30, 1705400.

    Article  Google Scholar 

  8. Kumar, M.; Lim, J.; Kim, S.; Seo, H. Environment-adaptable photonic-electronic-coupled Neuromorphic angular visual system, ACS Nano 2020, 14, 14108–14117.

    Article  CAS  Google Scholar 

  9. Gao, S.; Liu, G.; Yang, H. L.; Hu, C.; Chen, Q. L.; Gong, G. D.; Xue, W. H.; Yi, X. H.; Shang, J.; Li, R. W. An oxide Schottky junction artificial optoelectronic synapse, ACS Nano 2019, 13, 2634–2642.

    Article  CAS  Google Scholar 

  10. Wang, Y.; Lv, Z.; Chen, J. R.; Wang, Z. P.; Zhou, Y.; Zhou, L.; Chen, X. L.; Han, S. T. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing, Adv. Mater. 2018, 30, 1802883.

    Article  Google Scholar 

  11. Wu, Q. T.; Wang, J. W.; Cao, J. C.; Lu, C. Y.; Yang, G. H.; Shi, X. W.; Chuai, X. C.; Gong, Y. X.; Su, Y.; Zhao, Y. et al. Photoelectric plasticity in oxide thin film transistors with tunable synaptic functions, Adv. Electron. Mater. 2018, 4, 1800556.

    Article  Google Scholar 

  12. Hu, L. X.; Yang, J.; Wang, J. R.; Cheng, P. H.; Chua, L. O.; Zhuge, F. All-optically controlled memristor for optoelectronic neuromorphic computing, Adv. Funct. Mater. 2021, 31, 2005582.

    Article  CAS  Google Scholar 

  13. Wang, Y.; Yin, L.; Huang, W.; Li, Y. Y.; Huang, S. J.; Zhu, Y. Y.; Yang, D. R.; Pi, X. D. Optoelectronic synaptic devices for neuromorphic computing, Adv. Intell. Syst. 2021, 3, 2000099.

    Article  Google Scholar 

  14. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures, Nature 2013, 499, 419–425.

    Article  CAS  Google Scholar 

  15. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano 2014, 8, 1102–1120.

    Article  CAS  Google Scholar 

  16. Kufer, D.; Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed, Nano Lett. 2015, 15, 7307–7313.

    Article  CAS  Google Scholar 

  17. Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics, Adv. Mater. 2015, 27, 6575–6581.

    Article  CAS  Google Scholar 

  18. Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W. D.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared, Small 2017, 13, 1700894.

    Article  Google Scholar 

  19. Tran, M. D.; Kim, H.; Kim, J. S.; Doan, M. H.; Chau, T. K.; Vu, Q. A.; Kim, J. H.; Lee, Y. H. Two-terminal multibit optical memory via van der Waals heterostructure, Adv. Mater. 2019, 31, 1807075.

    Article  Google Scholar 

  20. Lee, J.; Pak, S.; Lee, Y. W.; Cho, Y.; Hong, J.; Giraud, P.; Shin, H. S.; Morris, S. M.; Sohn, J. I.; Cha, S. et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release, Nat. Commun. 2017, 8, 14734.

    Article  CAS  Google Scholar 

  21. Cheng, R. Q.; Wang, F.; Yin, L.; Wang, Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures, Nat. Electron. 2018, 1, 356–361.

    Article  CAS  Google Scholar 

  22. Wang, S. Y.; Chen, C. S.; Yu, Z. H.; He, Y. L.; Chen, X. Y.; Wan, Q.; Shi, Y.; Zhang, D. W.; Zhou, H.; Wang, X. R. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility, Adv. Mater. 2011, 31, 1806227.

    Article  Google Scholar 

  23. He, H. K.; Yang, R.; Zhou, W.; Huang, H. M.; **ong, J.; Gan, L.; Zhai, T. Y; Guo, X. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2, Small 2018, 14, 1800079.

    Article  Google Scholar 

  24. Zhai, Y. B.; Yang, X. Q.; Wang, F.; Li, Z. X.; Ding, G. L.; Qiu, Z. F.; Wang, Y.; Zhou, Y.; Han, S. T. Infrared-sensitive memory based on direct-grown MoS2-upconversion-nanoparticle heterostructure, Adv. Mater. 2018, 30, 1803563.

    Article  Google Scholar 

  25. Jiang, J.; Hu, W. N.; **e, D. D.; Yang, J. L.; He, J.; Gao, Y. L.; Wan, Q. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration, Nanoscale 2019, 11, 1360–1369.

    Article  CAS  Google Scholar 

  26. Cheng, Y. C.; Li, H. J. W.; Liu, B.; Jiang, L. Y.; Liu, M.; Huang, H.; Yang, J. L.; He, J.; Jiang, J. Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics, Small 2020, 16, 2005217.

    Article  CAS  Google Scholar 

  27. **e, D. D.; Wei, L. B.; **e, M.; Jiang, L. Y.; Yang, J. L.; He, J.; Jiang, J. Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor, Adv. Funct. Mater. 2021, 31, 2010655.

    Article  CAS  Google Scholar 

  28. Wang, T. Y.; Meng, J. L.; He, Z. Y.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Ultralow power wearable heterosynapse with photoelectric synergistic modulation, Adv. Sci. 2020, 7, 1903480.

    Article  CAS  Google Scholar 

  29. Islam, M. M.; Dev, D.; Krishnaprasad, A.; Tetard, L.; Roy, T. Optoelectronic synapse using monolayer MoS2 field effect transistors, Sci. Rep. 2020, 10, 21870.

    Article  CAS  Google Scholar 

  30. Wang, Q.; Li, N.; Tang, J.; Zhu, J. Q.; Zhang, Q. H.; Jia, Q.; Lu, Y.; Wei, Z.; Yu, H.; Zhao, Y. C. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes, Nano Lett. 2020, 20, 7193–7199.

    Article  CAS  Google Scholar 

  31. Li, N.; Wang, Q. Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X. B.; Wang, G. L.; He, C. L.; **e, L. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors, Nat. Electron. 2020, 3, 711–717.

    Article  CAS  Google Scholar 

  32. Phillips, J. C. Stretched exponential relaxation in molecular and electronic glasses, Rep. Prog. Phys. 1996, 59, 1133–1207.

    Article  CAS  Google Scholar 

  33. Liu, G.; Wang, C.; Zhang, W. B.; Pan, L.; Zhang, C. C.; Yang, X.; Fan, F.; Chen, Y.; Li, R. W. Organic biomimicking memristor for information storage and processing applications, Adv. Electron. Mater. 2016, 2, 1500298.

    Article  Google Scholar 

  34. Yang, C. S.; Shang, D. S.; Liu, N.; Shi, G.; Shen, X.; Yu, R. C.; Li, Y. Q.; Sun, Y. A synaptic transistor based on quasi-2D molybdenum oxide, Adv. Mater. 2017, 29, 1700906.

    Article  Google Scholar 

  35. Tang, J. S.; Yuan, F.; Shen, X. K.; Wang, Z. R.; Rao, M. Y.; He, Y. Y.; Sun, Y. H.; Li, X. Y.; Zhang, W. B.; Li, Y. J. et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: Fundamentals, progress, and challenges, Adv. Mater. 2019, 31, 1902761.

    Article  CAS  Google Scholar 

  36. Tang, J.; He, C. L.; Tang, J. S.; Yue, K.; Zhang, Q. T.; Liu, Y. Z.; Wang, Q. Q.; Wang, S. P.; Li, N.; Shen, C. et al. A reliable all-2D materials artificial synapse for high energy-efficient neuromorphic computing, Adv. Funct. Mater. 2021, 31, 2011083.

    Article  CAS  Google Scholar 

  37. Yang, Y. C.; Chen, B.; Lu, W. D. Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity, Adv. Mater. 2015, 27, 7720–7727.

    Article  CAS  Google Scholar 

  38. He, C. L.; Tang, J.; Shang, D. S.; Tang, J. S.; **, Y.; Wang, S. P.; Li, N.; Zhang, Q. T.; Lu, J. K.; Wei, Z. et al. Artificial synapse based on van der Waals heterostructures with tunable synaptic functions for neuromorphic computing, ACS Appl. Mater. Interfaces 2020, 12, 11945–11954.

    Article  CAS  Google Scholar 

  39. John, R. A.; Liu, F. C.; Chien, N. A.; Kulkarni, M. R.; Zhu, C.; Fu, Q. D.; Basu, A.; Liu, Z.; Mathews, N. Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: Coexistence of hebbian and homeostatic synaptic metaplasticity, Adv. Mater. 2018, 30, 1800220.

    Article  Google Scholar 

  40. Park, H. L.; Lee, Y.; Kim, N.; Seo, D. G.; Go, G. T.; Lee, T. W. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics, Adv. Mater. 2020, 32, 1903558.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from the Key-Area Research and Development Program of Guangdong Province (No. 2020B0101340001), the National Natural Science Foundation of China (Nos. 61888102, 11834017, 51901025, and 12074412), the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (No. XDB30000000), and Postdoctoral Innovative Talent Support Program (No. BX2021351). We acknowledge Dr. Shuang Gao and Chen Ouyang for their helpful discussion in optic-electronic measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Congli He or Guangyu Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., He, C., Wang, Q. et al. Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses. Nano Res. 15, 5418–5424 (2022). https://doi.org/10.1007/s12274-022-4122-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4122-z

Keywords

Navigation