Log in

NIR-II photothermal therapy for effective tumor eradication enhanced by heterogeneous nanorods with dual catalytic activities

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Rational design and exploitation of nanomaterials with superior treatment properties for suitable indications is a way out to relieve cost constraint of therapy and solve the unsatisfactory efficacy for cancer patients. In this work, we propose a greatly facile approach to produce heterogeneous Pd-Au nanorods (Pd-Au NRs) that solve the current bottleneck problems of photothermal thermal therapy (PTT) as well as completely eliminate tumors in animal models without toxic side effects. Depositing Pd clusters on both tips of Au NRs offers Pd-Au NRs three novel functions, i.e., the extension of the absorption into NIR-II region, the activation of prodrug of 5-fluorouracil (5-Fu) via the bioorthogonal reaction, and the peroxidase-mimic activity to produce ·OH. The heterogeneous nanorods showed a high and stable photothermal conversion efficiency (52.07%) in a safer NIR-II irradiation region (1,064 nm), which not only eliminate most of tumor cells at only one dose of the irradiation for 5 min but also improve the in situ conversion of 5-fluoro-1-propargyluracil and H2O2 into active 5-Fu and ·OH to eradicate residual tumors for inhibiting tumor metastasis. This dual catalytic activity-synergistic mechanism of PTT demonstrates the importance of material design in solving current bottleneck problem of tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2017, 2, 16075.

    Article  CAS  Google Scholar 

  2. Wang, J.; Li, Y. Y.; Nie, G. J. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater. 2021, 6, 766–783.

    Article  CAS  Google Scholar 

  3. Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 2021, 71, 209–249.

    Google Scholar 

  4. Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566–13638.

    Article  CAS  Google Scholar 

  5. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  CAS  Google Scholar 

  6. Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.

    Article  CAS  Google Scholar 

  7. Sun, H. T.; Zhang, Q.; Li, J. C.; Peng, S. J.; Wang, X. L.; Cai, R. Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 2021, 37, 101073.

    Article  CAS  Google Scholar 

  8. Huang, X. J.; Zhang, W. L.; Guan, G. Q.; Song, G. S.; Zou, R. J.; Hu, J. Q. Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc. Chem. Res. 2017, 50, 2529–2538.

    Article  CAS  Google Scholar 

  9. Abbas, M.; Zou, Q. L.; Li, S. K.; Yan, X. H. Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv. Mater. 2017, 29, 1605021.

    Article  Google Scholar 

  10. Liu, S.; Pan, X. T.; Liu, H. Y. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem., Int. Ed. 2020, 59, 5890–5900.

    Article  CAS  Google Scholar 

  11. Yang, J.; Yao, M. H.; **, R. M.; Zhao, D. H.; Zhao, Y. D.; Liu, B. Polypeptide-engineered hydrogel coated gold nanorods for targeted drug delivery and chemo-photothermal therapy. ACS Biomater. Sci. Eng. 2017, 3, 2391–2398.

    Article  CAS  Google Scholar 

  12. Zhang, Z. J.; Wang, L. M.; Wang, J.; Jiang, X. M.; Li, X. H.; Hu, Z. J.; Ji, Y. L.; Wu, X. C.; Chen, C. Y. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 2012, 24, 1418–1423.

    Article  CAS  Google Scholar 

  13. Shen, S.; Tang, H. Y.; Zhang, X. T.; Ren, J. F.; Pang, Z. Q.; Wang, D. G.; Gao, H. L.; Qian, Y.; Jiang, X. G.; Yang, W. L. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013, 34, 3150–3158.

    Article  CAS  Google Scholar 

  14. Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.

    Article  CAS  Google Scholar 

  15. Chen, Y. S.; Zhao, Y.; Yoon, S. J.; Gambhir, S. S.; Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 2019, 14, 465–472.

    Article  CAS  Google Scholar 

  16. Sugiura, T.; Matsuki, D.; Okajima, J.; Komiya, A.; Mori, S.; Maruyama, S.; Kodama, T. Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light with controlled surface cooling. Nano Res. 2015, 8, 3842–3852.

    Article  CAS  Google Scholar 

  17. Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova. G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325–337.

    Article  CAS  Google Scholar 

  18. Zeng, J. Y.; Zhang, M. K.; Peng, M. Y.; Gong, D.; Zhang, X. Z. Porphyrinic metal—organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor. Adv. Funct. Mater. 2018, 28, 1705451.

    Article  Google Scholar 

  19. Nam, J.; Son, S.; Ochyl, L. J.; Kuai, R.; Schwendeman, A.; Moon, J. J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018, 9, 1074.

    Article  Google Scholar 

  20. Deng, X. R.; Liang, S.; Cai, X. C.; Huang, S. S.; Cheng, Z. Y.; Shi, Y. S.; Pang, M. L.; Ma, P. A.; Lin, J. Yolk-shell structured Au nanostar@metal-organic framework for synergistic chemophotothermal therapy in the second near-infrared window. Nano Lett. 2019, 19, 6772–6780.

    Article  CAS  Google Scholar 

  21. Rautio, J.; Meanwell, N. A.; Di, L.; Hageman, M. J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug. Discov. 2018, 17, 559–587.

    Article  CAS  Google Scholar 

  22. Dong, S. M.; Dong, Y. S.; Jia, T.; Liu, S. K.; Liu, J.; Yang, D.; He, F.; Gai, S. L.; Yang, P. P.; Lin, J. GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy. Adv. Mater. 2020, 32, 2002439.

    Article  CAS  Google Scholar 

  23. Dong, Y. S.; Tu, Y. L.; Wang, K. W.; Xu, C. F.; Yuan, Y. Y.; Wang, J. A general strategy for macrotheranostic prodrug activation: Synergy between the acidic tumor microenvironment and bioorthogonal chemistry. Angew. Chem., Int. Ed. 2020, 59, 7168–7172.

    Article  CAS  Google Scholar 

  24. Wang, W. J.; Zhang, X. Z.; Huang, R.; Hirschbiegel, C. M.; Wang, H. S.; Ding, Y.; Rotello, V. M. In situ activation of therapeutics through bioorthogonal catalysis. Adv. Drug Deiv. Rev. 2021, 176, 113893.

    Article  CAS  Google Scholar 

  25. Yao, Q. X.; Lin, F.; Fan, X. Y.; Wang, Y. P.; Liu, Y.; Liu, Z. F.; Jiang, X. Y.; Chen, P. R.; Gao, Y. Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems. Nat. Commun. 2018, 9, 5032.

    Article  Google Scholar 

  26. Du, Z.; Liu, C.; Song, H. L.; Scott, P.; Liu, Z. Q.; Ren, J. S.; Qu, X. G. Neutrophil-membrane-directed bioorthogonal synthesis of inflammation-targeting chiral drugs. Chem. 2020, 6, 2060–2072.

    Article  CAS  Google Scholar 

  27. Chang, M. Y.; Hou, Z. Y.; Wang, M.; Yang, C. Z.; Wang, R. F.; Li, F.; Liu, D. L.; Peng, T. L.; Li, C. X.; Lin, J. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew Chem., Int. Ed. 2021, 60, 12971–12979.

    Article  CAS  Google Scholar 

  28. Hu, Y. H.; Lv, T.; Ma, Y.; Xu, J. J.; Zhang, Y. H.; Hou, Y. L.; Huang, Z. J.; Ding, Y. Nanoscale coordination polymers for synergistic NO and chemodynamic therapy of liver cancer. Nano Lett. 2019, 19, 2731–2738.

    Article  CAS  Google Scholar 

  29. **ang, S. J.; Fan, Z. X.; Ye, Z. C.; Zhu, T. B.; Shi, D.; Ye, S. F.; Hou, Z. Q.; Chen, X. L. Endogenous Fe2+-activated ROS nanoamplifier for esterase-responsive and photoacoustic imaging-monitored therapeutic improvement. Nano Res. 2022, 15, 907–918.

    Article  CAS  Google Scholar 

  30. Sancho-Albero, M.; Rubio-Ruiz, B.; Pérez-López, A. M.; Sebastián, V.; Martín-Duque, P.; Arruebo, M.; Santamaría, J.; Unciti-Broceta, A. Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nat. Catal. 2019, 2, 864–872.

    Article  CAS  Google Scholar 

  31. Su, G. X.; Jiang, H. Q.; Zhu, H. Y.; Lv, J. J.; Yang, G. H.; Yan, B.; Zhu, J. J. Controlled deposition of palladium nanodendrites on the tips of gold nanorods and their enhanced catalytic activity. Nanoscale 2017, 9, 12494–12502.

    Article  CAS  Google Scholar 

  32. Petreni, A.; Bonardi, A.; Lomelino, C.; Osman, S. M.; ALOthman, Z. A.; Eldehna, W. M.; El-Haggar, R.; McKenna, R.; Nocentini, A.; Supuran, C. T. Inclusion of a 5-fluorouracil moiety in nitrogenous bases derivatives as human carbonic anhydrase IX and XII inhibitors produced a targeted action against MDA-MB-231 and T47D breast cancer cells. Eur. J. Med. Chem. 2020, 190, 112112.

    Article  CAS  Google Scholar 

  33. Wang, X.; Ma, Y. C.; Sheng, X.; Wang, Y. C.; Xu, H. X. Ultrathin polypyrrole nanosheets via space-confined synthesis for efficient photothermal therapy in the second near-infrared window. Nano Lett. 2018, 18, 2217–2225.

    Article  CAS  Google Scholar 

  34. Mugaka, B. P.; Zhang, S.; Li, R. Q.; Ma, Y.; Wang, B.; Hong, J.; Hu, Y. H.; Ding, Y.; **a, X. H. One-pot preparation of peptide-doped metal—amino acid framework for general encapsulation and targeted delivery. ACS Appl. Mater. Interfaces 2021, 13, 11195–11204.

    Article  CAS  Google Scholar 

  35. Liu, A. Y.; Wang, H. S.; Hou, X. S.; Ma, Y.; Yang, G. J.; Hou, Y. L.; Ding, Y. Combinatory antitumor therapy by cascade targeting of a single drug. Acta Pharm. Sin. B. 2020, 10, 667–679.

    Article  CAS  Google Scholar 

  36. Cui, T.; Ma, Y.; Yang, J. Y.; Liu, S.; Wang, Z. Z.; Zhang, F. F.; Wang, J.; Cai, T.; Dong, L.; Hong, J. et al. Protein corona-guided tumor targeting therapy via the surface modulation of low molecular weight PEG. Nanoscale 2021, 13, 5883–5891.

    Article  CAS  Google Scholar 

  37. Ge, C. C.; Fang, G.; Shen, X. M.; Chong, Y.; Wamer, W. G.; Gao, X. F.; Chai, Z. F.; Chen, C. Y.; Yin, J. J. Facet energy versus enzymelike activities: The unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano 2016, 10, 10436–10445.

    Article  CAS  Google Scholar 

  38. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    Article  CAS  Google Scholar 

  39. Liu, M. Z.; Guyot-Sionnest, P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 2005, 109, 22192–22200.

    Article  CAS  Google Scholar 

  40. Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.

    Article  CAS  Google Scholar 

  41. Ye, J. M.; Li, Z.; Fu, Q. R.; Li, Q. Q.; Zhang, X.; Su, L. C.; Yang, H. H.; Song, J. B. Quantitative photoacoustic diagnosis and precise treatment of inflammation in vivo using activatable theranostic nanoprobe. Adv. Funct. Mater. 2020, 30, 2001771.

    Article  CAS  Google Scholar 

  42. Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface Plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641.

    Article  CAS  Google Scholar 

  43. Du, Y.; Yang, C.; Li, F. Y.; Liao, H. W.; Chen, Z.; Lin, P. H.; Wang, N.; Zhou, Y.; Lee, J. Y.; Ding, Q. et al. Core-shell-satellite nanomaces as remotely controlled self-fueling Fenton reagents for imaging-guided triple-negative breast cancer-specific therapy. Small 2020, 16, 2002537.

    Article  CAS  Google Scholar 

  44. Ma, N. N.; Jiang, Y. W.; Zhang, X. D.; Wu, H.; Myers, J. N.; Liu, P. D.; **, H. Z.; Gu, N.; He, N. Y.; Wu, F. G. et al. Enhanced radiosensitization of gold nanospikes via hyperthermia in combined cancer radiation and photothermal therapy. ACS Appl. Mater. Interfaces 2016, 8, 28480–28494.

    Article  CAS  Google Scholar 

  45. Wang, Z.; Liu, B.; Sun, Q. Q.; Feng, L. L.; He, F.; Yang, P. P.; Gai, S. L.; Quan, Z. W.; Lin, J. Upconverted metal-organic framework janus architecture for near-infrared and ultrasound co-enhanced high performance tumor therapy. ACS Nano 2021, 15, 12342–12357.

    Article  CAS  Google Scholar 

  46. Wei, J. P.; Chen, X. L.; Shi, S. G.; Mo, S. G.; Zheng, N. F. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures. Nanoscale 2015, 7, 19018–19026.

    Article  CAS  Google Scholar 

  47. Speyer, J. L.; Collins, J. M.; Dedrick, R. L.; Brennan, M. F.; Buckpitt, A. R.; Londer, H.; DeVita, V. T. Jr.; Myers, C. E. Phase I and pharmacological studies of 5-fluorouracil administered intraperitoneally. Cancer Res. 1980, 40, 567–572.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos. 31870946, 81421004, 52027801, 31470916, and 51631001), the Natural Science Foundation of Bei**g Municipality (No. 2191001), the Funding of Double First-rate discipline construction (No. CPU2018GF07), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Open Project Program of MOE Key Laboratory of Drug Quality Control and Pharmacovigilance (No. DQCP20/21MS01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanglong Hou or Ya Ding.

Electronic Supplementary Material

12274_2022_4096_MOESM1_ESM.pdf

NIR-II photothermal therapy for effective tumor eradication enhanced by heterogeneous nanorods with dual catalytic activities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, W., Ou, M. et al. NIR-II photothermal therapy for effective tumor eradication enhanced by heterogeneous nanorods with dual catalytic activities. Nano Res. 15, 4310–4319 (2022). https://doi.org/10.1007/s12274-022-4096-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4096-x

Keywords

Navigation