Log in

Highly sensitive infrared polarized photodetector enabled by out-of-plane PSN architecture composing of p-MoTe2, semimetal-MoTe2 and n-SnSe2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Leveraging the unique physical properties, two-dimensional (2D) materials have circumvented the disadvantages of conventional epitaxial semiconductors and held great promise for potential optoelectronic applications. So far, two main detector architectures including photodiode based on a van der Waals P-N junction or Schottky junction and phototransistor based on individual 2D materials or hybrids have been well developed. However, a trade-off between responsivity and speed always exists in those technologies thus hindering the overall performance improvement. Here, we propose a new device concept by sandwiching the 2D anisotropic semimetal between p-type and n-type semiconductors in the out-of-plane direction, called PSN architecture, realizing the improvement of each parameter including broad spectral coverage, fast speed, high sensitivity, power-free and polarization-sensitive. We stack the p-type 2H-MoTe2, Weyl semimetal 1T-MoTe2 and n-type SnSe2 layer-by-layer constructing vertical sandwich structure where the top and bottom layers contribute to the internal built-in electric field, the intermediate layer can facilitate the exciton dissociation and act as infrared polarized light sensitizers. As a result, this PSN device exhibits broadband photo-response from 405 to 1,550 nm without external bias supply. At optical communication band (1,310 nm), operating at self-driven mode and room temperature, the responsivity and detectivity can reach up to 64.2 mA·W−1 and 2.2×1011 Jones, respectively, along with fast speed on the order of millisecond. Moreover, the device simultaneously exhibits exceptional detection capability for infrared polarized light, demonstrating the anisotropic photocurrent ratio of 1.55 at 1,310 nm and 2.02 at 1,550 nm, which is attributed to the strong in-plane optical anisotropy of middle 1T-MoTe2 layer. This work develops a new photodetector scheme with novel PSN architecture toward broadband, self-power, polarized light sensing and imaging modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krapf, D.; Adoram, B.; Shappir, J.; Sa’ar, A.; Thomas, S. G.; Liu, J. L.; Wang, K. L. Infrared multispectral detection using Si/SLGe1−x quantum well infrared photodetectors. Appl. Phys. Lett. 2001, 78, 495–497.

    Article  CAS  Google Scholar 

  2. Zhang, F. L.; Zhang, X. T.; Li, Z. Y.; Yi, R. X.; Li, Z.; Wang, N. Y.; Xu, X. X.; Azimi, Z.; Li, L.; Lysevych, M. et al. A new strategy for selective area growth of highly uniform InGaAs/InP multiple quantum well nanowire arrays for optoelectronic device applications. Adv. Funct. Mater., in press, DOI: https://doi.org/10.1002/adfm.202103057.

  3. Velicu, S.; Grein, C. H.; Emelie, P. Y.; Itsuno, A.; Phillips, J. D.; Wijewarnasuriya, P. Non-cryogenic operation of hgCdTe infrared detectors. In Proceedings of SPIE 7608, Quantum Sensing and Nanophotonic Devices VII, San Francisco, USA, 2010.

  4. Rogalski, A. Infrared detectors: Status and trends. Prog. Quant. Electron. 2003, 27, 59–210.

    Article  CAS  Google Scholar 

  5. Zhong, M. Z.; Meng, H. T.; Ren, Z. H.; Huang, L.; Yang, J. H.; Li, B.; **a, Q. L.; Wang, X. T.; Wei, Z. M.; He, J. Gate-controlled ambipolar transport in b-AsP crystals and their VIS-NIF photodetection. Nanoscale 2021, 13, 10579–10586.

    Article  CAS  Google Scholar 

  6. Wu, D.; Guo, J. W.; Wang, C. Q.; Ren, X. Y.; Chen, Y. S.; Lin, P.; Zeng, L. H.; Shi, Z. F.; Li, X. J.; Shan, C. X. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 2021, 15, 10119–10129.

    Article  CAS  Google Scholar 

  7. Zeng, L. H.; Chen, Q. M.; Zhang, Z. X.; Wu, D.; Yuan, H. Y.; Li, Y. Y.; Qarony, W.; Lau, S. P.; Luo, L. B.; Tsang, Y. H. Multilayered PdSe2/perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 2019, 6, 1901134.

    Article  CAS  Google Scholar 

  8. Zeng, L. H.; Wu, D.; Lin, S. H.; **e, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

    Article  CAS  Google Scholar 

  9. Huo, N. J.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 pn homojunction. Nat. Commun. 2017, 8, 572.

    Article  CAS  Google Scholar 

  10. Sun, M. X.; Fang, Q. Y.; **e, D.; Sun, Y. L.; Xu, J. L.; Teng, C. J.; Dai, R. X.; Yang, P.; Li, Z. X.; Li, W. W. et al. Novel transfer behaviors in 2D MoS2/WSe2 heterotransistor and its applications in visible-near infrared photodetection. Adv. Electron. Mater. 2017, 3, 1600502.

    Article  CAS  Google Scholar 

  11. Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

    Article  CAS  Google Scholar 

  12. **a, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

    Article  CAS  Google Scholar 

  13. Yu, X. C.; Li, Y. Y.; Hu, X. N.; Zhang, D. L.; Tao, Y.; Liu, Z. X.; He, Y. M.; Haque, M. A.; Liu, Z.; Wu, T. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 2018, 9, 4299.

    Article  CAS  Google Scholar 

  14. Lai, J. W.; Liu, X.; Ma, J. C.; Wang, Q. S.; Zhang, K. N.; Ren, X.; Liu, Y. N.; Gu, Q. Q.; Zhuo, X.; Lu, W. et al. Anisotropic broadband photoresponse of layered type-II weyl semimetal MoTe2. Adv. Mater. 2018, 30, 1707152.

    Article  CAS  Google Scholar 

  15. Wang, Q. S.; Zheng, J. C.; He, Y.; Cao, J.; Liu, X.; Wang, M. Y.; Ma, J. C.; Lai, J. W.; Lu, H.; Jia, S. et al. Robust edge photocurrent response on layered type II weyl semimetal WTe2. Nat. Commun. 2019, 10, 5736.

    Article  CAS  Google Scholar 

  16. Lai, J. W.; Liu, Y. N.; Ma, J. C.; Zhuo, X.; Peng, Y.; Lu, W.; Liu, Z.; Chen, J. H.; Sun, D. Broadband anisotropic photoresponse of the “hydrogen atom” version type-II weyl semimetal candidate TaIrTe4. ACS Nano 2018, 12, 4055–4061.

    Article  CAS  Google Scholar 

  17. **n, Y.; Wang, X. X.; Chen, Z.; Weller, D.; Wang, Y. Y.; Shi, L. J.; Ma, X.; Ding, C. J.; Li, W.; Guo, S. et al. Polarization-sensitive self-powered type-II GeSe/MoS2 van der Waals heterojunction photodetector. ACS Appl. Mater. Interfaces 2020, 12, 15406–15413.

    Article  CAS  Google Scholar 

  18. Tang, Y. X.; Hao, H.; Kang, Y.; Liu, Q. R.; Sui, Y.; Wei, K.; Cheng, X.; Jiang, T. Distinctive interfacial charge behavior and versatile photoresponse performance in isotropic/anisotropic WS2/ReS2 heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 53475–53483.

    Article  CAS  Google Scholar 

  19. Jia, C.; Wu, D.; Wu, E. P.; Guo, J. W.; Zhao, Z. H.; Shi, Z. F.; Xu, T. T.; Huang, X. W.; Tian, Y. T.; Li, X. J. A self-powered highperformance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity. J. Mater. Chem. C 2019, 7, 3817–3821.

    Article  CAS  Google Scholar 

  20. Wang, X. J.; Shang, J.; Zhu, M. J.; Zhou, X.; Hao, R.; Sun, L. N.; Xu, H.; Zheng, J. B.; Lei, X. F.; Li, C. et al. Controlled growth of large-scale uniform 1T’ MoTe2 crystals with tunable thickness and their photodetector applications. Nanoscale Horiz. 2020, 5, 954–959.

    Article  CAS  Google Scholar 

  21. Zhang, F.; Zhang, H. R.; Krylyuk, S.; Milligan, C. A.; Zhu, Y. Q.; Zemlyanov, D. Y.; Bendersky, L. A.; Burton, B. P.; Davydov, A. V.; Appenzeller, J. Electric-field induced structural transition in vertical MoTe2- and Mo1−xWxTe2-based resistive memories. Nat. Mater. 2019, 18, 55–61.

    Article  CAS  Google Scholar 

  22. Liu, M.; Zhang, J. J.; Xu, J.; Hu, B. F.; Sun, K.; Yang, Y.; Wang, J.; Du, B. L.; Zhang, H. F, The crystallization, thermodynamic and thermoelectric properties of vast off-stoichiometric Sn-Se crystals. J. Mater. Chem. C 2020, 8, 6422–6434.

    Article  Google Scholar 

  23. Gao, W.; Zheng, Z. Q.; Huang, L.; Yao, J. D.; Zhao, Y.; **ao, Y.; Li, J. B. Self-powered SnS1−xSex alloy/Silicon heterojunction photodetectors with high sensitivity in a wide spectral range. ACS Appl. Mater. Interfaces 2019, 11, 40222–40231.

    Article  CAS  Google Scholar 

  24. Xu, X. L.; Han, B.; Liu, S.; Yang, S. Q.; Jia, X. H.; Xu, W. J.; Gao, P.; Ye, Y.; Dai, L. Atomic-precision repair of a few-layer 2H-MoTe2 thin film by phase transition and recrystallization induced by a heterophase interface. Adv. Mater. 2020, 32, 2000236.

    Article  CAS  Google Scholar 

  25. Zhou, L.; Huang, S. X.; Tatsumi, Y.; Wu, L. J.; Guo, H. H.; Bie, Y. Q.; Ueno, K.; Yang, T.; Zhu, Y. M.; Kong, J. et al. Sensitive phonon-based probe for structure identification of 1T’ MoTe2. J. Am. Chem. Soc. 2017, 139, 8396–8399.

    Article  CAS  Google Scholar 

  26. Song, W. D.; Chen, J. X.; Li, Z. L.; Fang, X. S. Self-powered Mxene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater. 2021, 33, 2101059.

    Article  CAS  Google Scholar 

  27. Zhong, M. Z.; Meng, H. T.; Liu, S. J.; Yang, H.; Shen, W. F.; Hu, C. G.; Yang, J. H.; Ren, Z. H.; Li, B.; Liu, Y. Y. et al. In-plane optical and electrical anisotropy of 2D black arsenic. ACS Nano 2021, 15, 1701–1709.

    Article  CAS  Google Scholar 

  28. Yang, S. X.; Yang, Y. H.; Wu, M. H.; Hu, C. G.; Shen, W. F.; Gong, Y. J.; Huang, L.; Jiang, C. B.; Zhang, Y. Z.; Ajayan, P. M. Highly inplane optical and electrical anisotropy of 2D germanium arsenide. Adv. Funct. Mater. 2018, 28, 1707379.

    Article  CAS  Google Scholar 

  29. Han, L. X.; Yang, M. M.; Wen, P. T.; Gao, W.; Huo, N. J.; Li, J. B. A high performance self-powered photodetector based on a 1D Te-2D WS2 mixed-dimensional heterostructure. Nanoscale Adv. 2021, 3, 2657–2665.

    Article  CAS  Google Scholar 

  30. Shang, H. M.; Chen, H. Y.; Dai, M. L.; Hu, Y. X.; Gao, F.; Yang, H. H.; Xu, B.; Zhang, S. C.; Tan, B. Y.; Zhang, X. et al. A mixed-dimensional 1D Se-2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors. Nanoscale Horiz. 2020, 5, 564–572.

    Article  CAS  Google Scholar 

  31. Tan, C. Y.; Wang, H. H.; Zhu, X. D.; Gao, W. S.; Li, H.; Chen, J. W.; Li, G.; Chen, L. J.; Xu, J. M.; Hu, X. Z. et al. A self-powered photovoltaic photodetector based on a lateral WSe2-WSe2 homojunction. ACS Appl. Mater. Interfaces 2020, 12, 44934–44942.

    Article  CAS  Google Scholar 

  32. Lu, J. T.; Zheng, Z. Q.; Yao, J. Q.; Gao, W.; **ao, Y.; Zhang, M. L.; Li, J. B. An asymmetric contact-induced self-powered 2D In2S3 photodetector towards high-sensitivity and fast-response. Nanoscale 2020, 12, 7196–7205.

    Article  CAS  Google Scholar 

  33. Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; **e, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.

    Article  CAS  Google Scholar 

  34. Wu, D.; Guo, J. W.; Du, J.; **a, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on Graphene/PdSe2/Germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

    Article  CAS  Google Scholar 

  35. Lv, Q. S.; Yan, F. G.; Wei, X.; Wang, K. Y. High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv. Opt. Mater. 2018, 6, 1700490.

    Article  CAS  Google Scholar 

  36. Wu, E. P.; Wu, D.; Jia, C.; Wang, Y. G.; Yuan, H. Y.; Zeng, L. H.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 2019, 6, 565–572.

    Article  CAS  Google Scholar 

  37. Wu, W. H.; Zhang, Q.; Zhou, X.; Li, L.; Su, J. W.; Wang, F. K.; Zhai, T. Y. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy 2018, 51, 45–53.

    Article  CAS  Google Scholar 

  38. Ahn, J.; Kang, J. H.; Kyhm, J.; Choi, H. T.; Kim, M.; Ahn, D. H.; Kim, D. Y.; Ahn, I. H.; Park, J. B.; Park, S. et al. Self-powered visible-invisible multiband detection and imaging achieved using high-performance 2D MoTe2/MoS2 semivertical heterojunction photodiodes. ACS Appl. Mater. Interfaces 2020, 12, 10858–10866.

    Article  CAS  Google Scholar 

  39. Yu, M. M.; Gao, F.; Hu, Y. X.; Wang, L. F.; Hu, P. G.; Feng, W. Tunable electronic properties of multilayer InSe by alloy engineering for high performance self-powered photodetector. J. Colloid Interface Sci. 2020, 565, 239–244.

    Article  CAS  Google Scholar 

  40. Zhang, Z. X.; Zeng, L. H.; Tong, X. W.; Gao, Y.; **e, C.; Tsang, Y. H.; Luo, L. B.; Wu, Y. C. Ultrafast, self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J. Phys. Chem. Lett. 2018, 9, 1185–1194.

    Article  CAS  Google Scholar 

  41. Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.

    Article  CAS  Google Scholar 

  42. Tang, Y. C.; Wang, Z.; Wang, P.; Wu, F.; Wang, Y. M.; Chen, Y. F.; Wang, H. L.; Peng, M.; Shan, C. X.; Zhu, Z. H. et al. WSe2 photovoltaic device based on intramolecular p-n junction. Small 2019, 15, 1805545.

    Article  CAS  Google Scholar 

  43. Chen, Y.; Wang, X. D.; Wu, G. J.; Wang, Z.; Fang, H. H.; Lin, T.; Sun, S.; Shen, H.; Hu, W. D.; Wang, J. L. et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small 2018, 14, 1703293.

    Article  CAS  Google Scholar 

  44. **e, Y.; Wu, E. X.; Zhang, J.; Hu, X. D.; Zhang, D. H.; Liu, J. Gate-tunable photodetection/voltaic device based on BP/MoTe2 heterostructure. ACS Appl. Mater. Interfaces 2019, 11, 14215–14221.

    Article  CAS  Google Scholar 

  45. Wu, E. X.; ** to enable tunable and highperformance anti-ambipolar MoTe2/MoS2 heterotransistors. ACS Nano 2019, 13, 5430–5438.

    Article  CAS  Google Scholar 

  46. Wang, F.; Yin, L.; Wang, Z. X.; Xu, K.; Wang, F. M.; Shifa, T. A.; Huang, Y.; Jiang, C.; He, J. Configuration-dependent electrically tunable van der Waals heterostructures based on MoTe2/MoS2. Adv. Funct. Mater. 2016, 26, 5499–5506.

    Article  CAS  Google Scholar 

  47. Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Michaelis de Vasconcellos, S.; Bratschitsch, R.; van der Zant, H. S.; Castellanos-Gomez, A. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett 2014, 14, 5846–5852.

    Article  CAS  Google Scholar 

  48. Wu, F.; Li, Q.; Wang, P.; **a, H.; Wang, Z.; Wang, Y.; Luo, M.; Chen, L.; Chen, F. S.; Miao, J. et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.

    Article  CAS  Google Scholar 

  49. Wang, B.; Yang, S. X.; Wang, C.; Wu, M. H.; Huang, L.; Liu, Q.; Jiang, C. B. Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe2/n-MoS2 van der Waals heterojunctions. Nanoscale 2017, 9, 10733–10740.

    Article  CAS  Google Scholar 

  50. Yan, F. G.; Zhao, L. X.; Patanè, A.; Hu, P. G.; Wei, X.; Luo, W. G.; Zhang, D.; Lv, Q. S.; Feng, Q.; Shen, C. et al. Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures. Nanotechnology 2017, 28, 27LT01.

    Article  CAS  Google Scholar 

  51. Feng, W.; **, Z.; Yuan, J.; Zhang, J.; Jia, S.; Dong, L.; Yoon, J.; Zhou, L.; Vajtai, R.; Tour, J. M. et al. A fast and zero-biased photodetector based on GaTe-InSe vertical 2D p-n heterojunction. 2D Mater. 2018, 5, 25008.

    Article  CAS  Google Scholar 

  52. Zhao, S.; Wu, J.; **, K.; Ding, H.; Li, T.; Wu, C.; Pan, N.; Wang, X. Highly polarized and fast photoresponse of black phosphorus-InSe vertical p-n heterojunctions. Adv. Funct. Mater. 2018, 28, 1802011.

    Article  CAS  Google Scholar 

  53. Yang, Y. S.; Liu, S. C.; Yang, W.; Li, Z. B.; Wang, Y.; Wang, X.; Zhang, S. S.; Zhang, Y.; Long, M. S.; Zhang, G. M. et al. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J. Am. Chem. Soc. 2018, 140, 4150–4156.

    Article  CAS  Google Scholar 

  54. Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11904108 and 62004071), the China Postdoctoral Science Foundation (No. 2020M672680), and the “The Pearl River Talent Recruitment Program” (No. 2019ZT08X639). X. W. thanks the support of Natural Science Foundation of Guangdong Province in China (Nos. 2019A1515011132 and 2017A030313022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nengjie Huo or **gbo Li.

Electronic Supplementary Material

12274_2021_4008_MOESM1_ESM.pdf

Highly sensitive infrared polarized photodetector enabled by out-of-plane PSN architecture composing of p-MoTe2, semimetal-MoTe2 and n-SnSe2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., **ong, J., Wu, X. et al. Highly sensitive infrared polarized photodetector enabled by out-of-plane PSN architecture composing of p-MoTe2, semimetal-MoTe2 and n-SnSe2. Nano Res. 15, 5384–5391 (2022). https://doi.org/10.1007/s12274-021-4008-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4008-5

Keywords

Navigation