Log in

Wet-chemical synthesis and applications of amorphous metal-containing nanomaterials

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the past decades, metal-containing nanomaterials have attracted increasing interests owing to their intriguing physicochemical properties and various promising applications. Recent research has revealed that the phase of metal-containing nanomaterials could significantly affect their properties and functions. In particular, nanomaterials with amorphous phase, which possess long-range disordered atomic arrangements, and the amorphous/crystalline heterophase nanostructures comprised of both amorphous and crystalline phases, have exhibited superior performance in various applications, e.g., catalysis and energy storage. In this review, a brief overview of the recent progress on the wet-chemical synthesis and applications of amorphous and amorphous/crystalline heterophase metal-containing nanomaterials has been provided. Subsequently, on the basis of different categories of metal-containing nanomaterials, including metals, metal alloys, and metal compounds, their synthetic routes and promising applications will be highlighted. Finally, current challenges and some personal perspectives in this emerging research field will be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, T. H.; Ahn, J.; Shi, S.; Wang, P.; Gao, R. Q.; Qin, D. Noble-metal nanoframes and their catalytic applications. Chem. Rev. 2021, 121, 796–833.

    CAS  Google Scholar 

  2. Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

    CAS  Google Scholar 

  3. Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; **a, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

    CAS  Google Scholar 

  4. Zhou, M.; Li, C.; Fang, J. Y. Noble-metal based random alloy and intermetallic nanocrystals: Syntheses and applications. Chem. Rev. 2021, 121, 736–795.

    CAS  Google Scholar 

  5. Yin, X. M.; Tang, C. S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A. T. S. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115.

    CAS  Google Scholar 

  6. Dai, Y. H.; Gao, X.; Wang, Q. J.; Wan, X. Y.; Zhou, C. M.; Yang, Y. H. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem. Soc. Rev. 2021, 50, 5590–5630.

    CAS  Google Scholar 

  7. Li, S. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Nanostructured metal phosphides: From controllable synthesis to sustainable catalysis. Chem. Soc. Rev. 2021, 50, 7539–7586.

    CAS  Google Scholar 

  8. Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.

    CAS  Google Scholar 

  9. Li, Z. J.; Zhai, L.; Ge, Y. Y.; Huang, Z. Q.; Shi, Z. Y.; Liu, J. W.; Zhai, W.; Liang, J. Z.; Zhang, H. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. Natl. Sci. Rev., in press, DOI: https://doi.org/10.1093/nsr/nwab142.

  10. Zhang, T. R.; Wang, S. Y. Noble-metal-free electrocatalysis. Acta Phys. -Chim. Sin. 2021, 37, 2012052.

    Google Scholar 

  11. Centi, G. Smart catalytic materials for energy transition. SmartMat 2020, 1, e1005.

    Google Scholar 

  12. Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

    CAS  Google Scholar 

  13. Ge, Y. Y.; Wang, X. X.; Huang, B.; Huang, Z. Q.; Chen, B.; Ling, C. Y.; Liu, J. W.; Liu, G. H.; Zhang, J.; Wang, G. et al. Seeded synthesis of unconventional 2H-phase Pd alloy nanomaterials for highly efficient oxygen reduction. J. Am. Chem. Soc. 2021, 143, 17292–17299.

    CAS  Google Scholar 

  14. Liang, J. S.; Liu, X.; Li, Q. Principles, strategies, and approaches for designing highly durable platinum-based catalysts for proton exchange membrane fuel cells. Acta Phys. -Chim. Sin. 2021, 37, 2010072.

    Google Scholar 

  15. Zheng, T. F.; Jiang, J. X.; Wang, J.; Hu, S. F.; Ding, W.; Wei, Z. D. Regulation of electrocatalysts based on confinement-induced properties. Acta Phys. -Chim. Sin. 2021, 37, 2011027.

    Google Scholar 

  16. Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. -Chim. Sin. 2021, 37, 2108017.

    Google Scholar 

  17. Li, Z.; Fu, J. Y.; Feng, Y.; Dong, C. K.; Liu, H.; Du, X. W. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat. Catal. 2019, 2, 1107–1114.

    CAS  Google Scholar 

  18. Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Gong, Y.; Yi, D.; Zhang, Q. H.; Zhu, C. Z.; Saleem, F.; Chen, B.; Lai, Z. C. et al. Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Sci. Adv. 2021, 7, eabd6647.

    CAS  Google Scholar 

  19. Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

    CAS  Google Scholar 

  20. Zhong, M.; Tran, K.; Min, Y.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183.

    CAS  Google Scholar 

  21. Meng, Y. C.; Kuang, S. Y.; Liu, H.; Fan, Q.; Ma, X. B.; Zhang, S. Recent advances in electrochemical CO2 reduction using copper-based catalysts. Acta Phys. -Chim. Sin. 2021, 37, 2006034.

    Google Scholar 

  22. Kumbhakar, P.; Gowda, C. C.; Mahapatra, P. L.; Mukherjee, M.; Malviya, K. D.; Chaker, M.; Chandra, A.; Lahiri, B.; Ajayan, P. M.; Jariwala, D. et al. Emerging 2D metal oxides and their applications. Mater. Today 2021, 45, 142–168.

    CAS  Google Scholar 

  23. Ma, R. Z.; Sasaki, T. Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res. 2015, 48, 136–143.

    CAS  Google Scholar 

  24. Chen, G.; Wan, H.; Ma, W.; Zhang, N.; Cao, Y. J.; Liu, X. H.; Wang, J.; Ma, R. Z. Layered metal hydroxides and their derivatives: Controllable synthesis, chemical exfoliation, and electrocatalytic applications. Adv. Energy Mater. 2020, 10, 1902535.

    CAS  Google Scholar 

  25. Di, T. M.; Xu, Q. L.; Ho, W.; Tang, H.; **ang, Q. J.; Yu, J. G. Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem 2019, 11, 1394–1411.

    CAS  Google Scholar 

  26. Pu, Z. H.; Liu, T. T.; Amiinu, I. S.; Cheng, R. L.; Wang, P. Y.; Zhang, C. T.; Ji, P. X.; Hu, W. H.; Liu, J.; Mu, S. C. Transitionmetal phosphides: Activity origin, energy-related electrocatalysis applications, and synthetic strategies. Adv. Funct. Mater. 2020, 30, 2004009.

    CAS  Google Scholar 

  27. Wang, X. T.; Guo, L. SERS activity of semiconductors: Crystalline and amorphous nanomaterials. Angew. Chem., Int. Ed. 2020, 59, 4231–4239.

    CAS  Google Scholar 

  28. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    CAS  Google Scholar 

  29. Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598.

    CAS  Google Scholar 

  30. Yang, T. H.; Shi, Y. F.; Janssen, A.; ** agents and their roles in shape-controlled synthesis of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2020, 59, 15378–15401.

    CAS  Google Scholar 

  31. Shi, Y. F.; Lyu, Z. H.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; **a, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

    CAS  Google Scholar 

  32. Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

    CAS  Google Scholar 

  33. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    CAS  Google Scholar 

  34. Zhao, M.; **a, Y. N. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nat. Rev. Mater. 2020, 5, 440–459.

    CAS  Google Scholar 

  35. Sokolikova, M. S.; Mattevi, C. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev. 2020, 49, 3952–3980.

    CAS  Google Scholar 

  36. Zhang, X.; Lai, Z. C.; Ma, Q. L.; Zhang, H. Novel structured transition metal dichalcogenide nanosheets. Chem. Soc. Rev. 2018, 47, 3301–3338.

    Google Scholar 

  37. Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 2018, 30, 1707189.

    Google Scholar 

  38. Sow, C. P., Suchithra, P.; Mettela, G.; Kulkarni, G. U. Noble metal nanomaterials with nontraditional crystal structures. Annu. Rev. Mater. Res. 2020, 50, 345–370.

    CAS  Google Scholar 

  39. Li, H. Y.; Wang, X. Phase control in inorganic nanocrystals through finely tuned growth at an ultrathin scale. Acc. Chem. Res. 2019, 52, 780–790.

    CAS  Google Scholar 

  40. Park, S.; Kim, C.; Park, S. O.; Oh, N. K.; Kim, U.; Lee, J.; Seo, J.; Yang, Y. J.; Lim, H. Y.; Kwak, S. K. et al. Phase engineering of transition metal dichalcogenides with unprecedentedly high phase purity, stability, and scalability via molten-metal-assisted intercalation. Adv. Mater. 2020, 32, 2001889.

    CAS  Google Scholar 

  41. Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

    CAS  Google Scholar 

  42. Ge, Y. Y.; Shi, Z. Y.; Tan, C. L.; Chen, Y.; Cheng, H. F.; He, Q. Y.; Zhang, H. Two-dimensional nanomaterials with unconventional phases. Chem 2020, 6, 1237–1253.

    CAS  Google Scholar 

  43. Li, H. X.; Zhou, X. C.; Zhai, W.; Lu, S. Y.; Liang, J. Z.; He, Z.; Long, H. W.; **ong, T. F.; Sun, H. Y.; He, Q. Y. et al. Phase engineering of nanomaterials for clean energy and catalytic applications. Adv. Energy Mater. 2020, 10, 2002019.

    CAS  Google Scholar 

  44. Lu, S. Y.; Liang, J. Z.; Long, H. W.; Li, H. X.; Zhou, X. C.; He, Z.; Chen, Y.; Sun, H. Y.; Fan, Z. X.; Zhang, H. Crystal phase control of gold nanomaterials by wet-chemical synthesis. Acc. Chem. Res. 2020, 53, 2106–2118.

    CAS  Google Scholar 

  45. Liu, J. W.; Huang, J. T.; Niu, W. X.; Tan, C. L.; Zhang, H. Unconventional-phase crystalline materials constructed from multiscale building blocks. Chem. Rev. 2021, 121, 5830–5888.

    CAS  Google Scholar 

  46. Zhou, M.; Liu, J. W.; Ling, C. Y.; Ge, Y. Y.; Chen, B.; Tan, C. L.; Fan, Z. X.; Huang, J. T.; Chen, J. Z.; Liu, Z. Q. et al. Synthesis of Pd3Sn and PdCuSn nanorods with L12 phase for highly efficient electrocatalytic ethanol oxidation. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202106115.

  47. Zhou, M.; Guo, J. N.; Zhao, B.; Li, C.; Zhang, L. H.; Fang, J. Y. Improvement of oxygen reduction performance in alkaline media by tuning phase structure of Pd-Bi nanocatalysts. J. Am. Chem. Soc. 2021, 143, 15891–15897.

    CAS  Google Scholar 

  48. Hong, S.; Lee, C. S.; Lee, M. H.; Lee, Y.; Ma, K. Y.; Kim, G.; Yoon, S. I.; Ihm, K.; Kim, K. J.; Shin, T. J. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 2020, 582, 511–514.

    CAS  Google Scholar 

  49. Toh, C.; Zhang, H. J.; Lin, J. H.; Mayorov, A. S.; Wang, Y. P.; Orofeo, C. M.; Ferry, D. B.; Andersen, H.; Kakenov, N.; Guo, Z. L. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 2020, 577, 199–203.

    CAS  Google Scholar 

  50. Yan, W.; Richard, I.; Kurtuldu, G.; James, N. D.; Schiavone, G.; Squair, J. W.; Nguyen-Dang, T.; Das Gupta, T.; Qu, Y. P.; Cao, J. D. et al. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat. Nanotechnol. 2020, 15, 875–882.

    CAS  Google Scholar 

  51. Croissant, J. G.; Butler, K. S.; Zink, J. I.; Brinker, C. J. Synthetic amorphous silica nanoparticles: Toxicity, biomedical and environmental implications. Nat. Rev. Mater. 2020, 5, 886–909.

    CAS  Google Scholar 

  52. Zhang, X.; Luo, Z. M.; Yu, P.; Cai, Y. Q.; Du, Y. H.; Wu, D. X.; Gao, S.; Tan, C. L.; Li, Z.; Ren, M. Q. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 2018, 1, 460–468.

    CAS  Google Scholar 

  53. Anantharaj, S.; Noda, S. Amorphous catalysts and electrochemical water splitting: An untold story of harmony. Small 2020, 16, 1905779.

    CAS  Google Scholar 

  54. Li, X. Y.; Cai, W. Z.; Li, D. S.; Xu, J.; Tao, H. B.; Liu, B. Amorphous alloys for electrocatalysis: The significant role of the amorphous alloy structure. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3682-7.

  55. Zhao, H. W.; Chen, X. J.; Wang, G. Z.; Qiu, Y. F.; Guo, L. Two-dimensional amorphous nanomaterials: Synthesis and applications. 2D Mater. 2019, 6, 032002.

    CAS  Google Scholar 

  56. Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

    Google Scholar 

  57. Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

    Google Scholar 

  58. Wang, X. F.; Pawar, G.; Li, Y. J.; Ren, X. D.; Zhang, M. H.; Lu, B. Y.; Banerjee, A.; Liu, P.; Dufek, E. J.; Zhang, J. G. et al. Glassy Li metal anode for high-performance rechargeable Li batteries. Nat. Mater. 2020, 19, 1339–1345.

    CAS  Google Scholar 

  59. Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

    Google Scholar 

  60. Sun, Y. J.; Liang, Y. X.; Luo, M. C.; Lv, F.; Qin, Y. N.; Wang, L.; Xu, C.; Fu, E. G.; Guo, S. J. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 2018, 14, 1702259.

    Google Scholar 

  61. Ma, L. L.; Zhou, Y. L.; Zhang, Z. W. B.; Liu, Y. Q.; Zhai, D.; Zhuang, H.; Li, Q.; Yuye, J. D.; Wu, C. T.; Chang, J. Multifunctional bioactive Nd-Ca-Si glasses for fluorescence thermometry, photothermal therapy, and burn tissue repair. Sci. Adv. 2020, 6, eabb1311.

    CAS  Google Scholar 

  62. Nagase, T.; Nino, A.; Hosokawa, T.; Umakoshi, Y. Electron irradiation induced crystal-to-amorphous-to-crystal transition in some metallic glasses. Mater. Trans. 2007, 48, 1651–1658.

    CAS  Google Scholar 

  63. Tan, C. L.; Zhang, H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 2015, 6, 7873.

    CAS  Google Scholar 

  64. Cai, W. Z.; Chen, R.; Yang, H. B.; Tao, H. B.; Wang, H. Y.; Gao, J. J.; Liu, W.; Liu, S.; Hung, S. F.; Liu, B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy. Nano Lett. 2020, 20, 4278–4285.

    CAS  Google Scholar 

  65. Lu, C. H.; Chang, F. C. Polyhedral oligomeric silsesquioxane-encapsulating amorphous palladium nanoclusters as catalysts for heck reactions. ACS Catal. 2011, 1, 481–488.

    CAS  Google Scholar 

  66. Ge, Y. Y.; Huang, Z. Q.; Ling, C. Y.; Chen, B.; Liu, G. G.; Zhou, M.; Liu, J. W.; Zhang, X.; Cheng, H. F.; Liu, G. H. et al. Phase-selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles. J. Am. Chem. Soc. 2020, 142, 18971–18980.

    CAS  Google Scholar 

  67. Duan, Y. X.; Meng, F. L.; Liu, K. H.; Yi, S. S.; Li, S. J.; Yan, J. M.; Jiang, Q. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv. Mater. 2018, 30, 1706194.

    Google Scholar 

  68. Yan, J. M.; Zhang, X. B.; Han, S.; Shioyama, H.; Xu, Q. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew. Chem., Int. Ed. 2008, 47, 2287–2289.

    CAS  Google Scholar 

  69. Corthey, G.; Rubert, A. A.; Picone, A. L.; Casillas, G.; Giovanetti, L. J.; Ramallo-López, J. M.; Zelaya, E.; Benitez, G. A.; Requejo, F. G.; José-Yacamán, M. et al. New insights into the chemistry of thiolate-protected palladium nanoparticles. J. Phys. Chem. C 2012, 116, 9830–9837.

    CAS  Google Scholar 

  70. Cheng, H. F.; Yang, N. L.; Liu, G. G.; Ge, Y. Y.; Huang, J. T.; Yun, Q. B.; Du, Y. H.; Sun, C. J.; Chen, B.; Liu, J. W. et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 2020, 32, 1902964.

    CAS  Google Scholar 

  71. Liu, Y.; Wang, C.; Wei, Y. J.; Zhu, L. Y.; Li, D. G.; Jiang, J. S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. Surfactant-induced postsynthetic modulation of Pd nanoparticle crystallinity. Nano Lett. 2011, 11, 1614–1617.

    CAS  Google Scholar 

  72. Shi, M. M.; Bao, D.; Li, S. J.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 2018, 8, 1800124.

    Google Scholar 

  73. Wen, M.; Wang, Y. F.; Wu, Q. S.; **, Y.; Cheng, M. Z. Controlled fabrication of 0 & 2D NiCu amorphous nanoalloys by the cooperation of hard-soft interfacial templates. J. Colloid Interface Sci. 2010, 342, 229–235.

    CAS  Google Scholar 

  74. Fang, Z. W.; Wu, P.; Qian, Y. M.; Yu, G. H. Gel-derived amorphous bismuth-nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation. Angew. Chem., Int. Ed. 2021, 60, 4275–4281.

    CAS  Google Scholar 

  75. Li, J. J.; Chen, J. C.; Wang, H.; Chen, N.; Wang, Z. C.; Guo, L.; Deepak, F. L. In situ atomic-scale study of particle-mediated nucleation and growth in amorphous bismuth to nanocrystal phase transformation. Adv. Sci. 2018, 5, 1700992.

    Google Scholar 

  76. Zhao, Y. G.; Liu, J. J.; Liu, C. G.; Wang, F.; Song, Y. Amorphous CuPt alloy nanotubes induced by Na2S2O3 as efficient catalysts for the methanol oxidation reaction. ACS Catal. 2016, 6, 4127–4134.

    CAS  Google Scholar 

  77. Wang, W. C.; He, T. O.; Yang, X. L.; Liu, Y. M.; Wang, C. Q.; Li, J.; **ao, A. D.; Zhang, K.; Shi, X. T.; **, M. S. General synthesis of amorphous PdM (M = Cu, Fe, Co, Ni) alloy nanowires for boosting HCOOH dehydrogenation. Nano Lett. 2021, 21, 3458–3464.

    CAS  Google Scholar 

  78. Lin, Z. Y.; Du, C.; Yan, B.; Wang, C. X.; Yang, G. W. Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution. Nat. Commun. 2018, 9, 4036.

    Google Scholar 

  79. Lin, Z. Y.; Du, C.; Yan, B.; Yang, G. W. Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability. J. Catal. 2019, 372, 299–310.

    CAS  Google Scholar 

  80. Liu, W.; Xu, Q.; Cui, W. L.; Zhu, C. H.; Qi, Y. H. CO2-assisted fabrication of two-dimensional amorphous molybdenum oxide nanosheets for enhanced plasmon resonances. Angew. Chem., Int. Ed. 2017, 56, 1600–1604.

    CAS  Google Scholar 

  81. Chen, W. L.; Ma, Y. L.; Li, F.; Pan, L.; Gao, W. P.; **ang, Q.; Shang, W.; Song, C. Y.; Tao, P.; Zhu, H. et al. Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation. Adv. Funct. Mater. 2019, 29, 1904278.

    CAS  Google Scholar 

  82. Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeißer, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 2014, 136, 17530–17536.

    CAS  Google Scholar 

  83. Zhao, H. W.; Zhu, Y. J.; Li, F. S.; Hao, R.; Wang, S. X.; Guo, L. A generalized strategy for the synthesis of large-size ultrathin two-dimensional metal oxide nanosheets. Angew. Chem., Int. Ed. 2017, 56, 8766–8770.

    CAS  Google Scholar 

  84. Bao, H. M.; Zhang, H. W.; Liu, G. Q.; Li, Y.; Cai, W. P. Nanoscaled amorphous TiO2 hollow spheres: TiCl4 liquid droplet-based hydrolysis fabrication and strong hollow structure-enhanced surface-enhanced Raman scattering effects. Langmuir 2017, 33, 5430–5438.

    CAS  Google Scholar 

  85. Duan, Y.; Yu, Z. Y.; Hu, S. J.; Zheng, X. S.; Zhang, C. T.; Ding, H. H.; Hu, B. C.; Fu, Q. Q.; Yu, Z. L.; Zheng, X. et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem., Int. Ed. 2019, 58, 15772–15777.

    CAS  Google Scholar 

  86. Ma, J. Y.; Tan, X. J.; Ma, Y. F.; Yao, X. Y.; Zhang, J. H.; Wang, L. Z. Facile fabrication of amorphous molybdenum oxide as a sensitive and stable SERS substrate under redox treatment. Chem. — Eur. J. 2020, 26, 2653–2657.

    CAS  Google Scholar 

  87. Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091.

    CAS  Google Scholar 

  88. Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.

    Google Scholar 

  89. Jia, B. B.; Hao, R.; Huang, Z. N.; Hu, P. F.; Li, L. D.; Zhang, Y.; Guo, L. Creating ultrathin amorphous metal hydroxide and oxide nanosheet libraries. J. Mater. Chem. A 2019, 7, 4383–4388.

    CAS  Google Scholar 

  90. Liu, J. Z.; Ji, Y. F.; Nai, J. W.; Niu, X. G.; Luo, Y.; Guo, L.; Yang, S. H. Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 2018, 11, 1736–1741.

    CAS  Google Scholar 

  91. Zhou, Y. N.; Xu, Q.; Ge, T. P.; Zheng, X. L.; Zhang, L.; Yan, P. F. Accurate control of VS2 nanosheets for coexisting high photoluminescence and photothermal conversion efficiency. Angew. Chem., Int. Ed. 2020, 59, 3322–3328.

    CAS  Google Scholar 

  92. Li, P. S.; Duan, X. X.; Wang, S. Y.; Zheng, L. R.; Li, Y. P.; Duan, H. H.; Kuang, Y.; Sun, X. M. Amorphous ruthenium-sulfide with isolated catalytic sites for Pt-like electrocatalytic hydrogen production over whole pH range. Small 2019, 15, 1904043.

    CAS  Google Scholar 

  93. Li, A. R.; Lin, J.; Huang, Z. N.; Wang, X. T.; Guo, L. Surface-enhanced Raman spectroscopy on amorphous semiconducting rhodium sulfide microbowl substrates. iScience 2018, 10, 1–10.

    Google Scholar 

  94. Yang, X.; Wu, R.; Liu, H. Y.; Fan, H. M.; Zhang, H. Y.; Sun, Y. F. Amorphous molybdenum selenide as highly efficient photocatalyst for the photodegradation of organic dyes under visible light. Appl. Surf. Sci. 2018, 457, 214–220.

    CAS  Google Scholar 

  95. Yang, Z. Q.; Li, H. L.; Yang, J. W.; Yang, Q.; Zhao, J. X.; Yang, J. P.; Qu, W. Q.; Feng, Y.; Shih, K. Amorphous molybdenum selenide nanosheet as an efficient trap for the permanent sequestration of vapor-phase elemental mercury. Adv. Sci. 2019, 6, 1901410.

    CAS  Google Scholar 

  96. Wang, J.; Huang, B. L.; Ji, Y. J.; Sun, M. Z.; Wu, T.; Yin, R. G.; Zhu, X.; Li, Y. Y.; Shao, Q.; Huang, X. Q. A general strategy to glassy M-Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation. Adv. Mater. 2020, 32, 1907112.

    CAS  Google Scholar 

  97. Tong, D. G.; Wang, D.; Chu, W.; Sun, J. H.; Wu, P. Cobalt-boron amorphous alloy prepared in water/cetyl-trimethyl-ammonium bromide/n-hexanol microemulsion as anode for alkaline secondary batteries. Electrochim. Acta 2010, 55, 2299–2305.

    CAS  Google Scholar 

  98. Kiani, M. T.; Barr, C. M.; Xu, S. C.; Doan, D.; Wang, Z. X.; Parakh, A.; Hattar, K.; Gu, X. W. Ductile metallic glass nanoparticles via colloidal synthesis. Nano Lett. 2020, 20, 6481–6487.

    CAS  Google Scholar 

  99. van Wonterghem, J.; Merup, S.; Koch, C. J. W.; Charles, S. W.; Wells, S. Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution. Nature 1986, 322, 622–623.

    Google Scholar 

  100. Liu, G.; He, D. Y.; Yao, R.; Zhao, Y.; Li, J. P. Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Res. 2018, 11, 1664–1675.

    CAS  Google Scholar 

  101. Rajesh, B.; Sasirekha, N.; Chen, Y. W. Physicochemical and catalytic properties of Fe-P ultrafine amorphous catalysts. J. Mol. Catal. A:Chem. 2007, 275, 174–182.

    CAS  Google Scholar 

  102. Kumar, V. B.; Kimmel, G.; Porat, Z.; Gedanken, A. Formation of particles of bismuth-based binary alloys and intermetallic compounds by ultrasonic cavitation. New J. Chem. 2015, 39, 5374–5381.

    CAS  Google Scholar 

  103. Reardon, A. C. Metallurgy for the Non-Metallurgist; ASM International: Materials Park, OH, USA, 2011.

    Google Scholar 

  104. Lei, Y. D.; Tang, Z. H.; Liao, R. J.; Guo, B. C. Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide. Green Chem. 2011, 13, 1655–1658.

    CAS  Google Scholar 

  105. Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

    CAS  Google Scholar 

  106. Yun, Q. B.; Li, L. X.; Hu, Z. N.; Lu, Q. P.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826.

    CAS  Google Scholar 

  107. Darr, J. A.; Zhang, J. Y.; Makwana, N. M.; Weng, X. L. Continuous hydrothermal synthesis of inorganic nanoparticles: Applications and future directions. Chem. Rev. 2017, 117, 11125–11238.

    CAS  Google Scholar 

  108. Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

    Google Scholar 

  109. Gao, Q.; Huang, C. Q.; Ju, Y. M.; Gao, M. R.; Liu, J. W.; An, D.; Cui, C. H.; Zheng, Y. R.; Li, W. W.; Yu, S. H. Phase-selective syntheses of cobalt telluride nanofleeces for efficient oxygen evolution catalysts. Angew. Chem., Int. Ed. 2017, 56, 7769–7773.

    CAS  Google Scholar 

  110. Li, H.; Yang, H. X.; Li, H. X. Highly active mesoporous Co-B amorphous alloy catalyst for cinnamaldehyde hydrogenation to cinnamyl alcohol. J. Catal. 2007, 251, 233–238.

    CAS  Google Scholar 

  111. Du, X. Q.; Yang, C. L.; Zeng, X.; Wu, T.; Zhou, Y. H.; Cai, P.; Cheng, G. Z.; Luo, W. Amorphous NiP supported on rGO for superior hydrogen generation from hydrolysis of ammonia borane. Int. J. Hydrog. Energy 2017, 42, 14181–14187.

    CAS  Google Scholar 

  112. Li, Z. P.; Shang, J. P.; Su, C. N.; Zhang, S. B.; Wu, M. X.; Guo, Y. Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions. J. Fuel Chem. Technol. 2018, 46, 473–478.

    CAS  Google Scholar 

  113. Hausleitner, C.; Hafner, J. Structural modeling of transition-metal-metalloid glasses by use of tight-binding-bond forces. Phys. Rev. B 1993, 47, 5689–5709.

    CAS  Google Scholar 

  114. Pei, Y.; Zhou, G. B.; Luan, N.; Zong, B. N.; Qiao, M. H.; Tao, F. Synthesis and catalysis of chemically reduced metal-metalloid amorphous alloys. Chem. Soc. Rev. 2012, 41, 8140–8162.

    CAS  Google Scholar 

  115. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.

    CAS  Google Scholar 

  116. Yin, P. F.; Zhou, M.; Chen, J. Z.; Tan, C. L.; Liu, G. G.; Ma, Q. L.; Yun, Q. B.; Zhang, X.; Cheng, H. F.; Lu, Q. P. et al. Synthesis of palladium-based crystalline@amorphous core-shell nanoplates for highly efficient ethanol oxidation. Adv. Mater. 2020, 32, 2000482.

    CAS  Google Scholar 

  117. Cheng, H. F.; Yang, N. L.; Liu, X. Z.; Yun, Q. B.; Goh, M. H.; Chen, B.; Qi, X. Y.; Lu, Q. P.; Chen, X. P.; Liu, W. et al. Aging amorphous/crystalline heterophase PdCu nanosheets for catalytic reactions. Natl. Sci. Rev. 2019, 6, 955–961.

    CAS  Google Scholar 

  118. Ge, J. J.; Yin, P. Q.; Chen, Y.; Cheng, H. F.; Liu, J. W.; Chen, B.; Tan, C. L.; Yin, P. F.; Zheng, H. X.; Li, Q. Q. et al. Ultrathin amorphous/crystalline heterophase Rh and Rh alloy nanosheets as tandem catalysts for direct indole synthesis. Adv. Mater. 2021, 33, 2006711.

    CAS  Google Scholar 

  119. Zhao, X.; Wang, H. E.; Cao, J.; Cai, W.; Sui, J. H. Amorphous/crystalline hybrid MoO2 nanosheets for high-energy lithium-ion capacitors. Chem. Commun. 2017, 53, 10723–10726.

    CAS  Google Scholar 

  120. Ren, Y. M.; Xu, Q.; Zheng, X. L.; Fu, Y. Z.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Zhou, Y. C. Building of peculiar heterostructure of Ag/two-dimensional fullerene shell-WO3−x for enhanced photoelectrochemical performance. Appl. Catal. B:Environ. 2018, 231, 381–390.

    CAS  Google Scholar 

  121. **e, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; **e, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

    CAS  Google Scholar 

  122. Kuang, M.; Zhang, J. M.; Liu, D. B.; Tan, H. T.; Dinh, K. N.; Yang, L.; Ren, H.; Huang, W. J.; Fang, W.; Yao, J. D. et al. Amorphous/crystalline heterostructured cobalt-vanadium-iron (oxy)hydroxides for highly efficient oxygen evolution reaction. Adv. Energy Mater. 2020, 10, 2002215.

    CAS  Google Scholar 

  123. Yang, Q.; Wu, Q. L.; Liu, Y.; Luo, S. P.; Wu, X. T.; Zhao, X.; Zou, H.; Long, B.; Chen, W.; Liao, Y. et al. Novel Bi-doped amorphous SnOx nanoshells for efficient electrochemical CO2 reduction into formate at low overpotentials. Adv. Mater. 2020, 32, 2002822.

    CAS  Google Scholar 

  124. Cao, D.; Wang, J. Y.; Xu, H. X.; Cheng, D. J. Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 2020, 16, 2000924.

    CAS  Google Scholar 

  125. Wang, Y.; Chen, Z.; Shen, R. A.; Cao, X.; Chen, Y. G.; Chen, C.; Wang, D. S.; Peng, Q.; Li, Y. D. Pd-dispersed CuS heteronanoplates for selective hydrogenation of phenylacetylene. Nano Res. 2016, 9, 1209–1219.

    CAS  Google Scholar 

  126. Cao, X.; Chen, Z.; Lin, R.; Cheong, W. C.; Liu, S. J.; Zhang, J.; Peng, Q.; Chen, C.; Han, T.; Tong, X. J. et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene. Nat. Catal. 2018, 1, 704–710.

    CAS  Google Scholar 

  127. Dong, Z. H.; Lin, F.; Yao, Y. H.; Jiao, L. F. Crystalline Ni(OH)2/amorphous NiMoOx mixed-catalyst with Pt-like performance for hydrogen production. Adv. Energy Mater. 2019, 9, 1902703.

    CAS  Google Scholar 

  128. Huang, X.; Liu, Z. Q.; Millet, M. M.; Dong, J. C.; Plodine, M.; Ding, F.; Schlögl, R.; Willinger, M. G. In situ atomic-scale observation of surface-tension-induced structural transformation of Ag-NiP, core-shell nanocrystals. ACS Nano 2018, 12, 7197–7205.

    CAS  Google Scholar 

  129. Wang, P. T.; Qiao, M.; Shao, Q.; Pi, Y. C.; Zhu, X.; Li, Y. F.; Huang, X. Q. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 4933.

    Google Scholar 

  130. Wang, P. T.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Huang, X. Q. Core@shell structured Au@SnO2 nanoparticles with improved N2 adsorption/activation and electrical conductivity for efficient N2 fixation. Sci. Bull. 2020, 65, 350–358.

    CAS  Google Scholar 

  131. Li, X. Y.; **ao, L. P.; Zhou, L.; Xu, Q. C.; Weng, J.; Xu, J.; Liu, B. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide @2D black phosphorus for overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 21106–21113.

    CAS  Google Scholar 

  132. He, T. O.; Wang, W. C.; Yang, X. L.; Shi, F. L.; Ye, Z. Y.; Zheng, Y. Z.; Li, F.; Wu, J. B.; Yin, Y. D.; **, M. S. Deposition of atomically thin Pt shells on amorphous palladium phosphide cores for enhancing the electrocatalytic durability. ACS Nano 2021, 15, 7348–7356.

    CAS  Google Scholar 

  133. He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; **, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

    CAS  Google Scholar 

  134. Yang, J. P.; Wang, Y. X.; Li, W.; Wang, L. J.; Fan, Y. C.; Jiang, W.; Luo, W.; Wang, Y.; Kong, B.; Selomulya, C. et al. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater. 2017, 29, 1700523.

    Google Scholar 

  135. Lv, F.; Zhang, W. Y.; Sun, M. Z.; Lin, F. X.; Wu, T.; Zhou, P.; Yang, W. X.; Gao, P.; Huang, B. L.; Guo, S. J. Au clusters on Pd nanosheets selectively switch the pathway of ethanol electrooxidation: Amorphous/crystalline interface matters. Adv. Energy Mater. 2021, 11, 2100187.

    CAS  Google Scholar 

  136. He, D. P.; Zhang, L. B.; He, D. S.; Zhou, G.; Lin, Y.; Deng, Z. X.; Hong, X.; Wu, Y.; Chen, C.; Li, Y. D. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362.

    CAS  Google Scholar 

  137. Yang, C. Y.; Huang, B. L.; Bai, S. X.; Feng, Y. G.; Shao, Q.; Huang, X. Q. A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals. Adv. Mater. 2020, 32, 2001267.

    CAS  Google Scholar 

  138. Li, P. X.; Fu, W. Z.; Zhuang, P. Y.; Cao, Y. D.; Tang, C.; Watson, A. B.; Dong, P.; Shen, J. F.; Ye, M. X. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation. Small 2019, 15, 1902535.

    Google Scholar 

  139. Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260.

    CAS  Google Scholar 

  140. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    CAS  Google Scholar 

  141. Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

    CAS  Google Scholar 

  142. Wang, J.; Han, L. L.; Huang, B. L.; Shao, Q.; **n, H. L.; Huang, X. Q. Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. Nat. Commun. 2019, 10, 5692.

    CAS  Google Scholar 

  143. Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.

    CAS  Google Scholar 

  144. Hu, F.; Zhu, S. L.; Chen, S. M.; Li, Y.; Ma, L.; Wu, T. P.; Zhang, Y.; Wang, C. M.; Liu, C. C.; Yang, X. J. et al. Amorphous metallic NiFeP: A conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 2017, 29, 1606570.

    Google Scholar 

  145. Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

    CAS  Google Scholar 

  146. Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 2014, 136, 1734–1737.

    CAS  Google Scholar 

  147. Cheng, T.; **ao, H.; Goddard III, W. A. Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water. J. Am. Chem. Soc. 2016, 138, 13802–13805.

    CAS  Google Scholar 

  148. **e, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54.

    Google Scholar 

  149. Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.

    CAS  Google Scholar 

  150. Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

    CAS  Google Scholar 

  151. Krivec, M.; Segundo, R. A.; Faria, J. L.; Silva, A. M. T.; Dražić, G. Low-temperature synthesis and characterization of rutile nanoparticles with amorphous surface layer for photocatalytic degradation of caffeine. Appl. Catal. B: Environ. 2013, 140–141, 9–15.

    Google Scholar 

  152. Huang, H. J.; Wang, X.; Tervoort, E.; Zeng, G. B.; Liu, T.; Chen, X.; Sologubenko, A.; Niederberger, M. Nano-sized structurally disordered metal oxide composite aerogels as high-power anodes in hybrid supercapacitors. ACS Nano 2018, 12, 2753–2763.

    CAS  Google Scholar 

  153. Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

    CAS  Google Scholar 

  154. Chen, X. Y.; Yang, W. L.; Wang, S.; Qiao, M. H.; Yan, S. R.; Fan, K. N.; He, H. Amorphous Ni-B hollow spheres synthesized by controlled organization of Ni-B nanoparticles over PS beads via surface seeding/electroless plating. New J. Chem. 2005, 29, 266–268.

    CAS  Google Scholar 

  155. Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; **ao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894.

    CAS  Google Scholar 

  156. Liu, Z. J.; Zheng, F. F.; **ong, W. W.; Li, X. G.; Yuan, A. H.; Pang, H. Strategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries. SmartMat, in press, DOI: https://doi.org/10.1002/smm2.1064.

  157. Zhao, C. S.; Zhang, H. T.; Si, W. J.; Wu, H. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nat. Commun. 2016, 7, 12543.

    CAS  Google Scholar 

  158. Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485.

    CAS  Google Scholar 

  159. Chae, O. B.; Kim, J.; Park, I.; Jeong, H.; Ku, J. H.; Ryu, J. H.; Kang, K.; Oh, S. M. Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem. Mater. 2014, 26, 5874–5881.

    CAS  Google Scholar 

  160. Li, Q.; Xu, Y. X.; Zheng, S. S.; Guo, X. T.; Xue, H. G.; Pang, H. Recent progress in some amorphous materials for supercapacitors. Small 2018, 14, 1800426.

    Google Scholar 

  161. Wang, Y. G.; Song, Y. F.; **a, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants (Nos. 9610478, 9680314, 7020013, and 1886921), the Start-Up Grant (No. 9380100), ITC via the Hong Kong Branch of the National Precious Metals Material Engineering Research Center (NPMM) from City University of Hong Kong, the Research Grants Council of Hong Kong, China (No. AoE/P-701/20), and the Science Technology and Innovation Committee of Shenzhen Municipality (Nos. JCYJ20200109143412311 and SGDX2020110309300301, “Preparation of single atoms on transition metal chalcogenides for electrolytic hydrogen evolution”, CityU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Ge, Y., He, Z. et al. Wet-chemical synthesis and applications of amorphous metal-containing nanomaterials. Nano Res. 16, 4289–4309 (2023). https://doi.org/10.1007/s12274-021-4007-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4007-6

Keywords

Navigation