Log in

A smart MXene-copolymeric molecularly imprinted hydrogel with dual-response and photothermal conversion performance for specific recognition of cis-diol compounds

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, a novel MXene-copolymeric molecularly imprinted hydrogel (FMMIH) with temperature/pH dual response and photothermal conversion performance for selective recognition of cis-diol compounds is successfully prepared. Functionalized MXene becomes an important part of the hydrogel’s skeleton by participating in the free radical polymerization reaction. Therefore, FMMIH exhibits improved mechanical properties and great photothermal conversion performance. Furthermore, based on the temperature/pH dual response, FMMIH can realize the controllable capture and release of ginsenoside Rb1 with cis diol structures through dual recognitions of functional groups and geometric space. Under the conditions of pH 8.5 and 25 °C, the adsorption capacity of FMMIH is 26.3 mg·g−1 and the imprinting factor is 16.4, showing a good imprinting effect. It is worth noting that the volume shrinkage caused by photothermal conversion of the hydrogel is conducive to the elution of template molecules and greatly saves the time of desorption (the desorption efficiency is as high as 89.4% under light conditions for 30 min, which is 3.7 times in dark conditions). These excellent properties make it possible to have broad prospects in many fields such as separation of cis-diol compounds, drug delivery systems, and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    Article  CAS  Google Scholar 

  2. Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; **ong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 3576–3584.

    Article  CAS  Google Scholar 

  3. Yuan, Z. X.; Guo, H. N.; Huang, Y. K.; Li, W. Q.; Liu, Y. F.; Chen, K.; Yue, M. Y.; Wang, Y. J. Composites of NiSe2@C hollow nanospheres wrapped with Ti3C2Tx MXene for synergistic enhanced sodium storage. Chem. Eng. J. 2022, 429, 132394.

    Article  CAS  Google Scholar 

  4. Zhang, M.; Cao, J.; Wang, Y.; Song, J.; Jiang, T. C.; Zhang, Y. Y.; Si, W. M.; Li, X. W.; Meng, B.; Wen, G. W. Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors. Nano Res. 2021, 14, 699–706.

    Article  Google Scholar 

  5. Park, K. H.; Kim, S.; Hwang, H.; Hwang, M. J.; Song, S. H.; Shim, W. G.; Lee, D. Ti3C2Tx MXene-based three-dimensional architecture for carbon dioxide capture. J. Nanosci. Nanotechnol. 2021, 21, 4902–4907.

    Article  CAS  Google Scholar 

  6. Ding, L.; Wei, Y. Y.; Li, L. B.; Zhang, T.; Wang, H. H.; Xue, J.; Ding, L. X.; Wang, S. Q.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 2018, 9, 155.

    Article  Google Scholar 

  7. Guo, D. Z.; Li, X.; Jiao, Y. Q.; Yan, H. J.; Wu, A. P.; Yang, G. C.; Wang, Y.; Tian, C. G.; Fu, H. G. A dual-active Co-CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting. Nano Res. 2022, 15, 238–247.

    Article  CAS  Google Scholar 

  8. Zhao, S. F.; Hu, F. X.; Shi, Z. Z.; Fu, J. J.; Chen, Y.; Dai, F. Y.; Guo, C. X.; Li, C. M. 2-D/2-D heterostructured biomimetic enzyme by interfacial assembling Mn3(PO4)2 and MXene as a flexible platform for realtime sensitive sensing cell superoxide. Nano Res. 2021, 14, 879–886.

    Article  CAS  Google Scholar 

  9. Chen, W. Y.; Lai, S. N.; Yen, C. C.; Jiang, X. F.; Peroulis, D.; Stanciu, L. A. Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 2020, 14, 11490–11501.

    Article  CAS  Google Scholar 

  10. Song, M. L.; Pang, S. Y.; Guo, F.; Wong, M. C.; Hao, J. H. Fluoridefree 2D niobium carbide MXenes as stable and biocompatible Nanoplatforms for electrochemical biosensors with ultrahigh sensitivity. Adv. Sci. 2020, 7, 2001546.

    Article  CAS  Google Scholar 

  11. Sun, Y.; Zhou, Y. J.; Liu, Y.; Wu, Q. Y.; Zhu, M. M.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite. Nano Res. 2020, 13, 2683–2690.

    Article  CAS  Google Scholar 

  12. Chang, H.; Li, X. Z.; Shi, L. N.; Zhu, Y. R.; Yi, T. F. Towards high-performance electrocatalysts and photocatalysts: Design and construction of MXenes-based nanocomposites for water splitting. Chem. Eng. J. 2021, 421, 129944.

    Article  CAS  Google Scholar 

  13. Zhao, X.; Wang, L. Y.; Tang, C. Y.; Zha, X. J.; Liu, Y.; Su, B. H.; Ke, K.; Bao, R. Y.; Yang, M. B.; Yang, W. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 2020, 14, 8793–8805.

    Article  CAS  Google Scholar 

  14. Huang, K.; Li, Z. J.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124.

    Article  CAS  Google Scholar 

  15. Zhao, X.; Wang, L. Y.; Li, J. M.; Peng, L. M.; Tang, C. Y.; Zha, X. J.; Ke, K.; Yang, M. B.; Su, B. H.; Yang, W. Redox-mediated artificial non-enzymatic antioxidant MXene nanoplatforms for acute kidney injury alleviation. Adv. Sci. 2021, 8, 2101498.

    Article  CAS  Google Scholar 

  16. Liu, J.; Lu, W.; Lu, X. F.; Zhang, L.; Dong, H. F.; Li, Y. C. Versatile Ti3C2Tx MXene for free-radical scavenging. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3751-y.

  17. Xu, D. X.; Li, Z. D.; Li, L. S.; Wang, J. Insights into the photothermal conversion of 2D MXene nanomaterials: Synthesis, mechanism, and applications. Adv. Funct. Mater. 2020, 30, 2000712.

    Article  CAS  Google Scholar 

  18. Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264.

    Article  CAS  Google Scholar 

  19. **e, Z. J.; Duo, Y.; Lin, Z. T.; Fan, T. J.; **ng, C. Y.; Yu, L.; Wang, R. H.; Qiu, M.; Zhang, Y. P.; Zhao, Y. H. et al. The rise of 2D Photothermal materials beyond graphene for clean water production. Adv. Sci. 2020, 7, 1902236.

    Article  CAS  Google Scholar 

  20. Ding, L.; Li, L. B.; Liu, Y. C.; Wu, Y.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 2020, 3, 296–302.

    Article  Google Scholar 

  21. Wu, X. Q.; Jiang, X. F.; Fan, T. J.; Zheng, Z. W.; Liu, Z. Y.; Chen, Y. B.; Cao, L. Q.; **e, Z. J.; Zhang, D. W.; Zhao, J. Q. et al. Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials. Nano Res. 2020, 13, 1485–1508.

    Article  CAS  Google Scholar 

  22. Hao, Z. N.; Li, Y. F.; Liu, X. Y.; Jiang, T.; He, Y. C.; Zhang, X. W.; Cong, C.; Wang, D. S.; Liu, Z. W.; Gao, D. W. Enhancing biocatalysis of a MXene-based biomimetic plasmonic assembly for targeted cancer treatments in NIR-II biowindow. Chem. Eng. J. 2021, 425, 130639.

    Article  CAS  Google Scholar 

  23. **ng, C. Y.; Chen, S. Y.; Liang, X.; Liu, Q.; Qu, M. M.; Zou, Q. S.; Li, J. H.; Tan, H.; Liu, L. P.; Fan, D. Y. et al. Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: Toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl. Mater. Interfaces 2018, 10, 27631–27643.

    Article  CAS  Google Scholar 

  24. Xu, X. W.; Chen, Y. C.; He, P.; Wang, S.; Ling, K.; Liu, L. H.; Lei, P. F.; Huang, X. J.; Zhao, H.; Cao, J. Y. et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 2021, 14, 2875–2883.

    Article  CAS  Google Scholar 

  25. Ma, C.; Ma, M. G.; Si, C. L.; Ji, X. X.; Wan, P. B. Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 2021, 31, 2009524.

    Article  CAS  Google Scholar 

  26. Zhang, J. Q.; Wan, L. J.; Gao, Y.; Fang, X. L.; Lu, T.; Pan, L. K.; Xuan, F. Z. Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv. Electron. Mater. 2019, 5, 1900285.

    Article  Google Scholar 

  27. Zhang, Y. Z.; El-Demellawi, J. K.; Jiang, Q.; Ge, G.; Liang, H. F.; Lee, K.; Dong, X. C.; Alshareef, H. N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229–7251.

    Article  CAS  Google Scholar 

  28. Tao, N.; Zhang, D. P.; Li, X. L.; Lou, D. Y.; Sun, X. Y.; Wei, C. W.; Li, J.; Yang, J. L.; Liu, Y. N. Near-infrared light-responsive hydrogels via peroxide-decorated MXene-initiated polymerization. Chem. Sci. 2019, 10, 10765–10771.

    Article  CAS  Google Scholar 

  29. Wang, Q. H.; Pan, X. F.; Lin, C. M.; Gao, H. L.; Cao, S. L.; Ni, Y. H.; Ma, X. J. Modified Ti3C2Tx (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chem. Eng. J. 2020, 401, 126129.

    Article  CAS  Google Scholar 

  30. Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

    Article  CAS  Google Scholar 

  31. Wang, Q. H.; Pan, X. F.; Wang, X. P.; Cao, S. L.; Chen, L. H.; Ma, X. J.; Huang, L. L.; Ni, Y. H. Fabrication strategies and application fields of novel 2D Ti3C2Tx (MXene) composite hydrogels: A mini-review. Ceram. Int. 2021, 47, 4398–4403.

    Article  CAS  Google Scholar 

  32. Matsumoto, K.; Sakikawa, N.; Miyata, T. Thermo-responsive gels that absorb moisture and ooze water. Nat. Commun. 2018, 9, 2315.

    Article  Google Scholar 

  33. Cao, J. S.; Wu, X. D.; Wang, L. T.; Shao, G. S.; Qin, B. Y.; Wang, Z. H.; Wang, T.; Fu, Y. J. A cellulose-based temperature sensitivity molecular imprinted hydrogel for specific recognition and enrichment of paclitaxel. Int. J. Biol. Macromol. 2021, 181, 1231–1242.

    Article  CAS  Google Scholar 

  34. Pawłowska, S.; Rinoldi, C.; Nakielski, P.; Ziai, Y.; Urbanek, O.; Li, X. R.; Kowalewski, T. A.; Ding, B.; Pierini, F. Ultraviolet light-assisted electrospinning of core-shell fully cross-linked P(NIPAAm-co-NIPMAAm) hydrogel-based nanofibers for thermally induced drug delivery self-regulation. Adv. Mater. Interfaces 2020, 7, 2000247.

    Article  Google Scholar 

  35. Shin, B.; Kim, J.; Vales, T. P.; Yang, S. K.; Kim, J. K.; Sohn, H.; Kim, H. J. Thermoresponsive drug controlled release from chitosan-based hydrogel embedded with poly(N-isopropylacrylamide) nanogels. J. Polym. Sci., Part A:Polym. Chem. 2018, 56, 1907–1914.

    Article  CAS  Google Scholar 

  36. Li, Y.; Gao, D.; Guo, Y. F.; Wei, W.; Wang, Y.; Jiang, H. N.; Peng, F. X.; Meng, F. B.; Zhou, Z. W. A temperature-responsive composite for adaptive microwave absorption. Chem. Eng. J. 2022, 427, 131746.

    Article  CAS  Google Scholar 

  37. Qiao, S. L.; Wang, H. Temperature-responsive polymers: Synthesis, properties, and biomedical applications. Nano Res. 2018, 11, 5400–5423.

    Article  CAS  Google Scholar 

  38. Niu, L. Q.; Wang, X. X.; Mao, G. B.; Li, Z.; Ji, X. H.; He, Z. K. Sensitive fluorescent detection of methyltransferase based on thermosensitive poly (N-isopropylacrylamide). Talanta 2018, 189, 579–584.

    Article  CAS  Google Scholar 

  39. Dong, P.; Schott, B. J.; Means, A. K.; Grunlan, M. A. Comb architecture to control the selective diffusivity of a double network hydrogel. ACS Appl. Polym. Mater. 2020, 2, 5269–5277.

    Article  CAS  Google Scholar 

  40. Liao, H.; Guo, X. L.; Wan, P. B.; Yu, G. H. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 2019, 29, 1904507.

    Article  Google Scholar 

  41. Deng, Y. Q.; Shang, T. X.; Wu, Z. T.; Tao, Y.; Luo, C.; Liang, J. C.; Han, D. L.; Lyu, R.; Qi, C. S.; Lv, W. et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 2019, 31, 1902432.

    Article  CAS  Google Scholar 

  42. Hao, F.; Wang, L. Y.; Chen, B. L.; Qiu, L.; Nie, J.; Ma, G. P. Bifunctional smart hydrogel dressing with strain sensitivity and NIR-responsive performance. ACS Appl. Mater. Interfaces 2021, 13, 46938–46950.

    Article  CAS  Google Scholar 

  43. Sun, W. J.; Zhao, Y. Y.; Cheng, X. F.; He, J. H.; Lu, J. M. Surface functionalization of single-layered Ti3C2Tx MXene and its application in multilevel resistive memory. ACS Appl. Mater. Interfaces 2020, 12, 9865–9871.

    Article  CAS  Google Scholar 

  44. Arabi, M.; Ostovan, A.; Li, J. H.; Wang, X. Y.; Zhang, Z. Y.; Choo, J.; Chen, L. X. Molecular imprinting: Green perspectives and strategies. Adv. Mater. 2021, 33, 2100543.

    Article  CAS  Google Scholar 

  45. Ali, G. K.; Omer, K. M. Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio(chemical) sensing applications. Review. Talanta 2022, 236, 122878.

    Article  CAS  Google Scholar 

  46. BelBruno, J. J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119.

    Article  CAS  Google Scholar 

  47. Zheng, H. W.; Lin, H.; Chen, X. F.; Tian, J. J.; Pavase, T. R.; Wang, R. Q.; Sui, J. X.; Cao, L. M. Development of boronate affinity-based magnetic composites in biological analysis: Advances and future prospects. TrAC Trends Anal. Chem. 2020, 129, 115952.

    Article  CAS  Google Scholar 

  48. Li, H. Y.; He, H.; Liu, Z. Recent progress and application of boronate affinity materials in bioanalysis. TrAC Trends Anal. Chem. 2021, 140, 116271.

    Article  CAS  Google Scholar 

  49. Qin, X. X.; Zhang, Z.; Shao, H. J.; Zhang, R. G.; Chen, L. X.; Yang, X. B. Boronate affinity material-based sensors for recognition and detection of glycoproteins. Analyst 2020, 145, 7511–7527.

    Article  CAS  Google Scholar 

  50. Zhang, T. T.; Li, Y.; Zhao, X. D.; Li, W. H.; Sun, X. Y.; Li, J. S.; Lu, R. A novel recyclable absorption material with boronate affinity. Sep. Purif. Technol. 2021, 272, 118880.

    Article  CAS  Google Scholar 

  51. Zhang, B. Y.; Guo, B. L.; Tong, Y. K.; Chen, X.; Bi, S.; **, Y. X.; Tian, M. M. Synergistic effect of polyhedral oligomeric semisiloxane and boronate affinity molecularly imprinted polymer in a solid-phase extraction system for selective enrichment of ovalbumin. Microchem. J. 2021, 168, 106507.

    Article  CAS  Google Scholar 

  52. Hou, X. Y.; Guo, B. L.; Tong, Y. K.; Tian, M. M. Using self-polymerization synthesis of boronate-affinity hollow stannic oxide based fragment template molecularly imprinted polymers for the selective recognition of polyphenols. J. Chromatogr. A 2020, 1612, 460631.

    Article  CAS  Google Scholar 

  53. Xu, X. C.; Liu, C.; Zhang, W.; Zou, X. B. Active temperature regulation and teamed boronate affinity-facilitated microelectrode module for blood glucose detection in physiological environment. Sensor. Actuat. B:Chem. 2020, 324, 128720.

    Article  CAS  Google Scholar 

  54. Kang, N. X.; Gao, H. W.; He, L.; Liu, Y. L.; Fan, H. D.; Xu, Q. M.; Yang, S. L. Ginsenoside Rb1 is an immune-stimulatory agent with antiviral activity against enterovirus 71. J. Ethnopharmacol. 2021, 266, 113401.

    Article  CAS  Google Scholar 

  55. Jia, L. Q.; Ju, X.; Ma, Y. X.; Chen, S.; Lv, X. M.; Song, N.; Sui, G. Y.; Cao, Y.; Yu, N.; Wu, Y. et al. Comprehensive multiomics analysis of the effect of ginsenoside Rb1 on hyperlipidemia. Aging 2021, 13, 9732–9747.

    Article  CAS  Google Scholar 

  56. Du, Y. C.; Yu, B.; Wei, L. Q.; Wang, Y. L.; Zhang, X. M.; Ye, S. F. Efficient removal of Pb(II) by Ti3C2Tx powder modified with a silane coupling agent. J. Mater. Sci. 2019, 54, 13283–13297.

    Article  CAS  Google Scholar 

  57. Kumar, S.; Lei, Y. J.; Alshareef, N. H.; Quevedo-Lopez, M. A.; Salama, K. N. Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens. Bioelectron. 2018, 121, 243–249.

    Article  CAS  Google Scholar 

  58. Zhao, N. N.; Liu, Z. Q.; **ng, J. P.; Zheng, Z.; Song, F. R.; Liu, S. Teamed boronate affinity-functionalized branched polyethyleneimine-modified magnetic nanoparticles for the selective capture of ginsenosides from rat plasma. Chem. Eng. J. 2020, 383, 123079.

    Article  CAS  Google Scholar 

  59. Zhao, W. M.; Huang, A. L.; Yan, Z. F.; Bie, Z. J.; Chen, Y. Dual boronate affinity nanoparticles-based plasmonic immunosandwich assay for specific and sensitive detection of ginsenosides. Spectrochim. Acta A:Mol. Biomol. Spectrosc. 2020, 234, 118258.

    Article  CAS  Google Scholar 

  60. Liu, Q. S.; He, J.; Zhou, W. B.; Gu, Y. L.; Huang, H. Q.; Li, K. Q.; Yin, X. Y. Innovative method for the enrichment of high-polarity bioactive molecules present at low concentrations in complex matrices. J. Sep. Sci. 2017, 40, 744–752.

    Article  CAS  Google Scholar 

  61. Zhao, N. N.; Liu, S.; **ng, J. P.; Pi, Z. F.; Song, F. R.; Liu, Z. Q. Trace determination and characterization of ginsenosides in rat plasma through magnetic dispersive solid-phase extraction based on core-shell polydopamine- coated magnetic nanoparticles. J. Pharm. Anal. 2020, 10, 86–95.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 21978024), Bei**g Natural Science Foundation (No. 2202034), and the National Key R&D Program of China (No. 2019YFB1309703).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiandu Lei, Luying Wang or Qiong Yan.

Electronic Supplementary Material

12274_2021_3991_MOESM1_ESM.pdf

A smart MXene-copolymeric molecularly imprinted hydrogel with dual-response and photothermal conversion performance for specific recognition of cis-diol compounds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, Y., Zhu, H. et al. A smart MXene-copolymeric molecularly imprinted hydrogel with dual-response and photothermal conversion performance for specific recognition of cis-diol compounds. Nano Res. 15, 2764–2772 (2022). https://doi.org/10.1007/s12274-021-3991-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3991-x

Keywords

Navigation