Log in

Direct stam** multifunctional tactile sensor for pressure and temperature sensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible and wearable sensors have broad application prospects in health monitoring and artificial intelligence. Many different single-functional sensing devices have been developed in recent years, such as pressure sensors and temperature sensors. However, it is still a great challenge to design and fabricate tactile sensors with multiple sensing functions. Herein, we propose a simple direct stam** method for the fabrication of multifunctional tactile sensors. It can detect pressure and temperature stimuli signals simultaneously. This pressure/temperature sensor possesses high sensitivity (0.67 kPa−1), large linear range (0.75–5 kPa), and fast response speed (15.6 ms) in pressure sensing. It also has a high temperature sensitivity (1.41%/°C) and great linearity (0.99) for temperature sensing in the range of −30 to 30 °C. All these excellent performances indicate that this pressure/temperature sensor has great potential in applications for artificial intelligence and health monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Z. F.; Wang, Z.; Li, X. M.; Lin, Y. X.; Luo, N. Q.; Long, M. Z.; Zhao, N.; Xu, J. B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 2017, 11, 4507–4513.

    Article  CAS  Google Scholar 

  2. Shi, J. D.; Wang, L.; Dai, Z. H.; Zhao, L. Y.; Du, M. D.; Li, H. B.; Fang, Y. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 2018, 14, 1800819.

    Article  Google Scholar 

  3. Wan, C. J.; Chen, G.; Fu, Y. M.; Wang, M.; Matsuhisa, N.; Pan, S. W.; Pan, L.; Yang, H.; Wan, Q.; Zhu, L. Q. et al. An artificial sensory neuron with tactile perceptual learning. Adv. Mater. 2018, 30, 1801291.

    Article  Google Scholar 

  4. Boutry, C. M.; Kaizawa, Y.; Schroeder, B. C.; Chortos, A.; Legrand, A.; Wang, Z.; Chang, J.; Fox, P.; Bao, Z. A. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 2018, 1, 314–321.

    Article  Google Scholar 

  5. Dong, K.; Wu, Z. Y.; Deng, J. N.; Wang, A. C.; Zou, H. Y.; Chen, C. Y.; Hu, D. M.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A Stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 2018, 30, 1804944.

    Article  Google Scholar 

  6. Chen, S.; Jiang, K.; Lou, Z.; Chen, D.; Shen, G. Z. Recent developments in graphene-based tactile sensors and E-skins. Adv. Mater. Technol. 2018, 3, 1700248.

    Article  Google Scholar 

  7. Yin, B.; Liu, X. M.; Gao, H. Y.; Fu, T. D.; Yao, J. Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors. Nat. Commun. 2018, 9, 5161.

    Article  Google Scholar 

  8. Chou, H. H.; Nguyen, A.; Chortos, A.; To, J. W. F.; Lu, C. E.; Mei, J. G.; Kurosawa, T.; Bae, W. G.; Tok, J. B.; Bao, Z. A. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011.

    Article  CAS  Google Scholar 

  9. Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y. D.; Lim, H.; Kim, S. Y.; Ko, H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689–4697.

    Article  CAS  Google Scholar 

  10. Tian, H.; Shu, Y.; Wang, X. F.; Mohammad, M. A.; Bie, Z.; **e, Q. Y.; Li, C.; Mi, W. T.; Yang, Y.; Ren, T. L. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 2015, 5, 8603.

    Article  CAS  Google Scholar 

  11. Chun, S.; Kim, Y.; Oh, H. S.; Bae, G.; Park, W. A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing. Nanoscale 2015, 7, 11652–11659.

    Article  CAS  Google Scholar 

  12. Jian, M. Q.; **a, K. L.; Wang, Q.; Yin, Z.; Wang, H. M.; Wang, C. Y.; **e, H. H.; Zhang, M. C.; Zhang, Y. Y. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 2017, 27, 1606066.

    Article  Google Scholar 

  13. You, I.; Mackanic, D. G.; Matsuhisa, N.; Kang, J.; Kwon, J.; Beker, L.; Mun, J.; Suh, W.; Kim, T. Y.; Tok, J. B. H. et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 2020, 370, 961–965.

    Article  CAS  Google Scholar 

  14. Wang, Y.; Wu, H. T.; Xu, L.; Zhang, H. N.; Yang, Y.; Wang, Z. L. Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 2020, 6, eabb9083.

    Article  CAS  Google Scholar 

  15. Tao, X. L.; Liao, S. L.; Wang, Y. P. Polymer-assisted fully recyclable flexible sensors. EcoMat 2021, 3, e12083.

    Article  CAS  Google Scholar 

  16. Lu, Y.; Biswas, M. C.; Guo, Z. H.; Jeon, J. W.; Wujcik, E. K. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosens. Bioelectron. 2019, 123, 167–177.

    Article  CAS  Google Scholar 

  17. Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 2016, 26, 1678–1698.

    Article  CAS  Google Scholar 

  18. Kong, J. H.; Jang, N. S.; Kim, S. H.; Kim, J. M. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 2014, 77, 199–207.

    Article  CAS  Google Scholar 

  19. Lu, N. S.; Lu, C.; Yang, S. X.; Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 2012, 22, 4044–4050.

    Article  CAS  Google Scholar 

  20. Oh, J.; Yang, J. C.; Kim, J. O.; Park, H.; Kwon, S. Y.; Lee, S.; Sim, J. Y.; Oh, H. W.; Kim, J.; Park, S. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano 2018, 12, 7546–7553.

    Article  CAS  Google Scholar 

  21. Li, Q.; Zhang, L. N.; Tao, X. M.; Ding, X. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv. Healthc. Mater. 2017, 6, 1601371.

    Article  Google Scholar 

  22. Ismail, A. S.; Mamat, M. H.; Rusop, M. Humidity Sensor—A review of nanostructured zinc oxide (ZnO)-based humidity sensor. Appl. Mech. Mater. 2015, 773–774, 706–710.

    Article  Google Scholar 

  23. Wang, C. Y.; **a, K. L.; Zhang, M. C.; Jian, M. Q.; Zhang, Y. Y. An All-silk-derived dual-mode E-skin for simultaneous temperature-pressure detection. ACS Appl. Mater. Interfaces 2017, 9, 39484–39492.

    Article  CAS  Google Scholar 

  24. Zhang, L. C.; Jiang, Y.; Gao, H. C.; Jia, J. S.; Cui, Y.; Wang, S. M.; Hu, J. Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor. IEEE Photonics Technol. Lett. 2019, 31, 106–109.

    Article  CAS  Google Scholar 

  25. Trung, T. Q.; Ramasundaram, S.; Hwang, B. U.; Lee, N. E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 2016, 28, 502–509.

    Article  CAS  Google Scholar 

  26. Kickhofel, J.; Yang, J. M.; Prasser, H. M. Designing a high temperature high pressure mesh sensor. Nucl. Eng. Des. 2018, 336, 122–128.

    Article  CAS  Google Scholar 

  27. Graz, I.; Krause, M.; Bauer-Gogonea, S.; Bauer, S.; Lacour, S. P.; Ploss, B.; Zirkl, M.; Stadlober, B.; Wagner, S. Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin. J. Appl. Phys. 2009, 106, 034503.

    Article  Google Scholar 

  28. Yang, Y. J.; Cheng, M. Y.; Chang, W. Y.; Tsao, L. C.; Yang, S. A.; Shih, W. P.; Chang, F. Y.; Chang, S. H.; Fan, K. C. An integrated flexible temperature and tactile sensing array using PI-copper films. Sensor. Actuat. A:Phys. 2008, 143, 143–153.

    Article  CAS  Google Scholar 

  29. Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA 2005, 102, 12321–12325.

    Article  CAS  Google Scholar 

  30. Zhao, X. H.; Ma, S. N.; Long, H.; Yuan, H. Y.; Tang, C. Y.; Cheng, P. K.; Tsang, Y. H. Multifunctional sensor based on porous carbon derived from metal-organic frameworks for real time health monitoring. ACS Appl. Mater. Interfaces 2018, 10, 3986–3993.

    Article  CAS  Google Scholar 

  31. Honda, W.; Harada, S.; Arie, T.; Akita, S.; Takei, K. Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv. Funct. Mater. 2014, 24, 3299–3304.

    Article  CAS  Google Scholar 

  32. Harada, S.; Honda, W.; Arie, T.; Akita, S.; Takei, K. Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors. ACS Nano 2014, 8, 3921–3927.

    Article  CAS  Google Scholar 

  33. Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371.

    Article  CAS  Google Scholar 

  34. Ge, J.; Yao, H. B.; Wang, X.; Ye, Y. D.; Wang, J. L.; Wu, Z. Y.; Liu, J. W.; Fan, F. J.; Gao, H. L.; Zhang, C. L. et al. Stretchable conductors based on silver nanowires: improved performance through a binary network design. Angew. Chem. 2013, 125, 1698–1703.

    Article  Google Scholar 

  35. Lu, L. J.; Wei, X. D.; Zhang, Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. J. Mater. Chem. C. 2017, 5, 7035–7042.

    Article  CAS  Google Scholar 

  36. Lee, J.; Kim, S.; Lee, J.; Yang, D.; Park, B. C.; Ryu, S.; Park, I. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 2014, 6, 11932–11939.

    Article  CAS  Google Scholar 

  37. Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. A. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

    Article  CAS  Google Scholar 

  38. Muth, J. T.; Vogt, D. M.; Truby, R. L.; Mengüç, Y.; Kolesky, D. B.; Wood, R. J.; Lewis, J. A. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 2014, 26, 6307–6312.

    Article  CAS  Google Scholar 

  39. Michelis, F.; Bodelot, L.; Bonnassieux, Y.; Lebental, B. Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon 2015, 95, 1020–1026.

    Article  CAS  Google Scholar 

  40. Zeng, S. S.; Zhang, D. Y.; Huang, W. H.; Wang, Z. F.; Freire, S. G.; Yu, X. Y.; Smith, A. T.; Huang, E. Y.; Nguon, H.; Sun, L. Y. Bioinspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds. Nat. Commun. 2016, 7, 11802.

    Article  CAS  Google Scholar 

  41. Wang, M.; Wang, W.; Leow, W. R.; Wan, C. J.; Chen, G.; Zeng, Y.; Yu, J. C.; Liu, Y. Q.; Cai, P. Q.; Wang, H. et al. Enhancing the matrix addressing of flexible sensory arrays by a highly nonlinear threshold switch. Adv. Mater. 2018, 30, 1802516.

    Article  Google Scholar 

  42. Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.

    Article  CAS  Google Scholar 

  43. Liang, B. H.; Zhang, Z. A.; Chen, W. J.; Liu, D. W.; Yang, L. L.; Yang, R. L.; Zhu, H.; Tang, Z. K.; Gui, X. C. Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 2019, 11, 92.

    Article  CAS  Google Scholar 

  44. Chen, Y.; Gong, X. L.; Gai, J. G. Progress and challenges in transfer of large-area graphene films. Adv. Sci. 2016, 3, 1500343.

    Article  Google Scholar 

  45. Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.

    Article  Google Scholar 

  46. Vuorinen, T.; Niittynen, J.; Kankkunen, T.; Kraft, T. M.; Mäntysalo, M. Inkjet-printed graphene/PEDOT:PSS temperature sensors on a skin-conformable polyurethane substrate. Sci. Rep. 2016, 6, 35289.

    Article  CAS  Google Scholar 

  47. Takei, K.; Honda, W.; Harada, S.; Arie, T.; Akita, S. Toward flexible and wearable human-interactive health-monitoring devices. Adv. Healthc. Mater. 2015, 4, 487–500.

    Article  CAS  Google Scholar 

  48. Huynh, T. P.; Haick, H. Self-healing, fully functional, and multiparametric flexible sensing platform. Adv. Mater. 2016, 28, 138–143.

    Article  CAS  Google Scholar 

  49. Dankoco, M. D.; Tesfay, G. Y.; Benevent, E.; Bendahan, M. Temperature sensor realized by inkjet printing process on flexible substrate. Mater. Sci. Eng.:B 2016, 205, 1–5.

    Article  CAS  Google Scholar 

  50. Husain, M. D.; Kennon, R. Preliminary investigations into the development of textile based temperature sensor for healthcare applications. Fibers 2013, 1, 2–10.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52072415), Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515012387), and the Science and Technology Program of Guangzhou (No. 201904010450).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo-Ru Yang or Xuchun Gui.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, B., Huang, B., He, J. et al. Direct stam** multifunctional tactile sensor for pressure and temperature sensing. Nano Res. 15, 3614–3620 (2022). https://doi.org/10.1007/s12274-021-3906-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3906-x

Keywords

Navigation