Log in

Structural engineering of transition-metal nitrides for surface-enhanced Raman scattering chips

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Noble-metal-free surface-enhanced Raman scattering (SERS) substrates have attracted great attention for their abundant sources, good signal uniformity, superior biocompatibility, and high chemical stability. However, the lack of controllable synthesis and fabrication of noble-metal-free substrates with high SERS activity impedes their practical applications. Herein, we propose a general strategy to fabricate a series of planar transition-metal nitride (TMN) SERS chips via an ambient temperature sputtering deposition route. For the first time, tungsten nitride (WN) and tantalum nitride (TaN) are used as SERS materials. These planar TMN chips show remarkable Raman enhancement factors (EFs) with ∼ 105 owing to efficient photoinduced charge transfer process between TMN chips and probe molecules. Further, structural engineering of these TMN chips is used to improve their SERS activity. Benefiting from the synergistic effect of charge transfer process and electric field enhancement by constructing a nanocavity structure, the Raman EF of WN nanocavity chips could be greatly improved to ∼ 1.29 × 107, which is an order of magnitude higher than that of planar chips. Moreover, we also design the WN/monolayer MoS2 heterostructure chips. With the increase of surface electron density on the upper WN and more exciton resonance transitions in the heterostructure, a ∼ 1.94 × 107 level EF and a 5 × 10−10 M level detection limit could be achieved. Our results provide important guidance for the structural design of ultrasensitive noble-metal-free SERS chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cialla-May, D.; Zheng, X. S.; Weber, K.; Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chem. Soc. Rev. 2017, 46, 3945–3961.

    Article  CAS  Google Scholar 

  2. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

    Article  CAS  Google Scholar 

  3. Wang, X.; Huang, S. C.; Hu, S.; Yan, S.; Ren, B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271.

    Article  Google Scholar 

  4. Shen, J. L.; Su, J.; Yan, J.; Zhao, B.; Wang, D. F.; Wang, S. Y.; Li, K.; Liu, M. M.; He, Y.; Mathur, S. et al. Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification. Nano Res. 2015, 8, 731–742.

    Article  CAS  Google Scholar 

  5. Hao, Q.; Li, M. Z.; Wang, J. W.; Fan, X. C.; Jiang, J.; Wang, X. X.; Zhu, M. S.; Qiu, T.; Ma, L. B.; Chu, P. K. et al. Flexible surface-enhanced Raman scattering chip: A universal platform for real-time interfacial molecular analysis with femtomolar sensitivity. ACS Appl. Mater. Interfaces 2020, 12, 54174–54180.

    Article  CAS  Google Scholar 

  6. Langer, J.; de Aberasturi, D. J.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117.

    Article  CAS  Google Scholar 

  7. Alessandri, I.; Lombardi, J. R. Enhanced Raman scattering with dielectrics. Chem. Rev. 2016, 116, 14921–14981.

    Article  CAS  Google Scholar 

  8. Lan, L. L.; Gao, Y. M.; Fan, X. C.; Li, M. Z.; Hao, Q.; Qiu, T. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys. 2021, 16, 43300.

    Article  Google Scholar 

  9. Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130.

    Article  CAS  Google Scholar 

  10. Xu, J. T.; Li, X. T.; Wang, Y. X.; Guo, R. H.; Shang S. M.; Jiang, S. X. Flexible and reusable cap-like thin Fe2O3 film for SERS applications. Nano Res. 2019, 12, 381–388.

    Article  CAS  Google Scholar 

  11. Song, G.; Gong, W. B.; Cong, S.; Zhao, Z. G. Ultrathin two-dimensional nanostructures: Surface defects for morphology-driven enhanced semiconductor SERS. Angew. Chem., Int. Ed. 2021, 60, 5505–5511.

    Article  CAS  Google Scholar 

  12. Wang, X. T.; Shi, W. X.; Wang, S. X.; Zhao, H. W.; Lin, J.; Yang, Z.; Chen, M.; Guo, L. Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J. Am. Chem. Soc. 2019, 141, 5856–5862.

    Article  CAS  Google Scholar 

  13. Fan, X. C.; Li, M. Z.; Hao, Q.; Zhu, M. S.; Hou, X. Y.; Huang, H.; Ma, L. B.; Schmidt, O. G.; Qiu, T. High SERS sensitivity enabled by synergistically enhanced photoinduced charge transfer in amorphous nonstoichiometric semiconducting films. Adv. Mater. Interfaces 2019, 6, 1901133.

    Article  CAS  Google Scholar 

  14. Wang, X. T.; Shi, W. X.; **, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem., Int. Ed. 2017, 56, 9851–9855.

    Article  CAS  Google Scholar 

  15. Zheng, X. L.; Guo, H. L.; Xu, Y.; Zhang, J. L.; Wang, L. Z. Improving SERS sensitivity of TiO2 by utilizing the heterogeneity of facet-potentials. J. Mater. Chem. C 2020, 8, 13836–13842.

    Article  CAS  Google Scholar 

  16. Lin, J.; Hao, W.; Shang, Y.; Wang, X. T.; Qiu, D. L.; Ma, G. S.; Chen, C.; Li, S. Z.; Guo, L. Direct experimental observation of facet-dependent SERS of Cu2O polyhedra. Small 2018, 14, 1703274.

    Article  Google Scholar 

  17. Lin, J.; Shang, Y.; Li, X. X.; Yu, J.; Wang, X. T.; Guo, L. Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv. Mater. 2017, 29, 1604797.

    Article  Google Scholar 

  18. Yang, L. L.; Peng, Y. S.; Yang, Y.; Liu, J. J.; Huang, H. L.; Yu, B. H.; Zhao, J. M.; Lu, Y. L.; Huang, Z. R.; Li, Z. Y. et al. A novel ultrasensitive semiconductor SERS substrate boosted by the coupled resonance effect. Adv. Sci. 2019, 6, 1900310.

    Article  Google Scholar 

  19. Lee, Y.; Kim, H.; Lee, J.; Yu, S. H.; Hwang, E.; Lee C.; Ahn, J. H.; Cho, J. H. Enhanced Raman scattering of rhodamine 6G films on two-dimensional transition metal dichalcogenides correlated to photoinduced charge transfer. Chem. Mater. 2016, 28, 180–187.

    Article  CAS  Google Scholar 

  20. Miao, P.; Qin, J. K.; Shen, Y. F.; Su, H. M.; Dai, J. F.; Song, B.; Du, Y. C.; Sun, M. T.; Zhang, W.; Wang, H. L. et al. Unraveling the Raman enhancement mechanism on 1T′-phase ReS2 nanosheets. Small 2018, 14, 1704079.

    Article  Google Scholar 

  21. Li, M. Z.; Gao, Y. M.; Fan, X. C.; Wei, Y. J.; Hao, Q.; Qiu, T. Origin of layer-dependent SERS tunability in 2D transition metal dichalcogenides. Nanoscale Horiz. 2021, 6, 186–191.

    Article  CAS  Google Scholar 

  22. Lee, Y.; Kim, H.; Lee, J. B.; Cho, J. H.; Ahn, J. H. Pressure-induced chemical enhancement in Raman scattering from graphenerhodamine 6G-graphene sandwich structures. Carbon 2015, 89, 318–327.

    Article  CAS  Google Scholar 

  23. Sun, H. H.; Yao, M. G.; Liu, S.; Song, Y. P.; Shen, F. R.; Dong, J. J.; Yao, Z.; Zhao, B.; Liu, B. B. SERS selective enhancement on monolayer MoS2 enabled by a pressure-induced shift from resonance to charge transfer. ACS Appl. Mater. Interfaces 2021, 13, 26551–26560.

    Article  CAS  Google Scholar 

  24. Hou, X. Y.; Zhang, X. Y.; Ma, Q. W.; Tang, X.; Hao, Q.; Cheng, Y. C.; Qiu, T. Alloy engineering in few-layer manganese phosphorus trichalcogenides for surface-enhanced Raman scattering. Adv. Funct. Mater. 2020, 30, 1910171.

    Article  CAS  Google Scholar 

  25. Zheng, Z. H.; Cong, S.; Gong, W. B.; Xuan, J. N.; Li, G. H.; Lu, W. B.; Geng, F. X.; Zhao, Z. G. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 2017, 8, 1993.

    Article  Google Scholar 

  26. Cong, S.; Yuan, Y. Y.; Chen, Z. G.; Hou, J. Y.; Yang, M.; Su, Y. L.; Zhang, Y. Y.; Li, L.; Li, Q. W.; Geng, F. X. et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 2015, 6, 7800.

    Article  CAS  Google Scholar 

  27. Lan, L. L.; Hou, X. Y.; Gao, Y. M.; Fan, X. C.; Qiu, T. Inkjet-printed paper-based semiconducting substrates for surface-enhanced Raman spectroscopy. Nanotechnology 2020, 31, 055502.

    Article  CAS  Google Scholar 

  28. Ling, X.; Fang, W. J.; Lee, Y. H.; Araujo, P. T.; Zhang, X.; Rodriguez-Nieva, J. F.; Lin, Y. X.; Zhang, J.; Kong, J.; Dresselhaus, M. S. Raman enhancement effect on two-dimensional layered materials: Graphene, h-BN and MoS2. Nano Lett. 2014, 14, 3033–3040.

    Article  CAS  Google Scholar 

  29. Kannan, P. K.; Shankar, P.; Blackman, C.; Chung, C. H. Recent advances in 2D inorganic nanomaterials for SERS Sensing. Adv. Mater. 2019, 31, 1803432.

    Article  Google Scholar 

  30. Demirel, G.; Gieseking, R. L. M.; Ozdemir, R.; Kahmann, S.; Loi, M. A.; Schatz, G. C.; Facchetti, A.; Usta, H. Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity. Nat. Commun. 2019, 10, 5502.

    Article  CAS  Google Scholar 

  31. Yilmaz, M.; Babur, E.; Ozdemir, M.; Gieseking, R. L.; Dede, Y.; Tamer, U.; Schatz, G. C.; Facchetti, A.; Usta, H.; Demirel, G. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nat. Mater. 2017, 16, 918–924.

    Article  CAS  Google Scholar 

  32. Sun, H. Z.; Cong, S.; Zheng, Z. H.; Wang, Z.; Chen, Z. G.; Zhao, Z. G. Metal-organic frameworks as surface enhanced Raman scattering substrates with high tailorability. J. Am. Chem. Soc. 2019, 141, 870–878.

    Article  CAS  Google Scholar 

  33. Su, X. Y.; Ma, H.; Wang, H.; Li, X. L.; Han, X. X.; Zhao, B. Surface-enhanced Raman scattering on organic-inorganic hybrid perovskites. Chem. Commun. 2018, 54, 2134–2137.

    Article  CAS  Google Scholar 

  34. Fan, X. C.; Hao, Q.; Qiu, T.; Chu, P. K. Improving the performance of light-emitting diodes via plasmonic-based strategies. J. Appl. Phys. 2020, 127, 040901.

    Article  CAS  Google Scholar 

  35. Agrawal, A.; Cho, S. H.; Zandi, O.; Ghosh, S.; Johns, R. W.; Milliron, D. J. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 2018, 118, 3121–3207.

    Article  CAS  Google Scholar 

  36. Li, P.; Zhu, L.; Ma, C.; Zhang, L. X.; Guo, L.; Liu, Y. W.; Ma, H.; Zhao, B. Plasmonic molybdenum tungsten oxide hybrid with surface-enhanced Raman scattering comparable to that of noble metals. ACS Appl. Mater. Interfaces 2020, 12, 19153–19160.

    Article  CAS  Google Scholar 

  37. Hou, X. Y.; Luo, X. G.; Fan, X. C.; Peng, Z. H.; Qiu, T. Plasmon-coupled charge transfer in WO3−x semiconductor nanoarrays: Toward highly uniform silver-comparable SERS platforms. Phys. Chem. Chem. Phys. 2019, 21, 2611–2618.

    Article  CAS  Google Scholar 

  38. Liu, W.; Bai, H.; Li, X. S.; Li, W. T.; Zhai, J. F.; Li, J. F.; **, G. C. Improved surface-enhanced Raman spectroscopy sensitivity on metallic tungsten oxide by the synergistic effect of surface Plasmon resonance coupling and charge transfer. J. Phys. Chem. Lett. 2018, 9, 4096–4100.

    Article  CAS  Google Scholar 

  39. Tan, X. J.; Wang, L. Z.; Cheng, C.; Yan, X. F.; Shen, B.; Zhang, J. L. Plasmonic MoO3−x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem. Commun. 2016, 52, 2893–2896.

    Article  CAS  Google Scholar 

  40. Lan, L. L.; Fan, X. C.; Gao, Y. M.; Li, G. Q.; Hao, Q.; Qiu, T. Plasmonic metal carbide SERS chips. J. Mater. Chem. C 2020, 8, 14523–14530.

    Article  CAS  Google Scholar 

  41. Ye, Y. T.; Yi, W. C.; Liu, W.; Zhou, Y.; Bai, H.; Li, J. F.; **, G. C. Remarkable surface-enhanced Raman scattering of highly crystalline monolayer Ti3C2 nanosheets. Sci. China Mater. 2020, 63, 794–805.

    Article  CAS  Google Scholar 

  42. Zhong, Y.; **a, X. H.; Shi, F.; Zhan, J. Y.; Tu, J. P.; Fan, H. J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286.

    Article  Google Scholar 

  43. Huang, W. C.; Gao, Y.; Wang, J. X.; Ding, P. C.; Yan, M.; Wu, F. M.; Liu, J.; Liu, D. Q.; Guo, C. S.; Yang, B. et al. Plasmonic enhanced reactive oxygen species activation on low-work-function tungsten nitride for direct near-infrared driven photocatalysis. Small 2020, 16, 2004557.

    Article  CAS  Google Scholar 

  44. Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

    Article  Google Scholar 

  45. Hao, Q.; Li, W.; Xu, H. Y.; Wang, J. W.; Yin, Y.; Wang, H. Y.; Ma, L. B.; Ma, F.; Jiang, X. C.; Schmidt, O. G. et al. VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications. Adv. Mater. 2018, 30, 1705421.

    Article  Google Scholar 

  46. Guan, H. M.; Yi, W. C.; Li, T.; Li, Y. H.; Li, J. F.; Bai, H.; ** G. C. Low temperature synthesis of plasmonic molybdenum nitride nanosheets for surface enhanced Raman scattering. Nat. Commun. 2020, 11, 3889.

    Article  Google Scholar 

  47. Soundiraraju, B.; George, B. K. Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 2017, 11, 8892–8900.

    Article  CAS  Google Scholar 

  48. Guan, H. M.; Li, W. T.; Han, J.; Yi, W. C.; Bai, H.; Kong, Q. H.; **, G. C. General molten-salt route to three-dimensional porous transition metal nitrides as sensitive and stable Raman substrates. Nat. Commun. 2021, 12, 1376.

    Article  CAS  Google Scholar 

  49. Esmaeilzadeh, M.; Dizajghorbani-Aghdam, H.; Malekfar, R. Surface-enhanced Raman scattering of methylene blue on titanium nitride nanoparticles synthesized by laser ablation in organic solvents. Spectrochim. Acta A:Mol. Biomol. Spectrosc. 2021, 257, 119721.

    Article  CAS  Google Scholar 

  50. Du, R. F.; Yi, W. C.; Li, W. T.; Yang, H. F.; Bai, H.; Li, J. F.; **, G. C. Quasi-metal microwave route to MoN and Mo2C ultrafine nanocrystalline hollow spheres as surface-enhanced Raman scattering substrates. ACS Nano 2020, 14, 13718–13726.

    Article  CAS  Google Scholar 

  51. Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv. Sci. 2018, 5, 1700603.

    Article  Google Scholar 

  52. Karaballi, R. A.; Humagain, G.; Fleischman, B. R. A.; Dasog, M. Synthesis of plasmonic group-4 nitride nanocrystals by solid-state metathesis. Angew. Chem., Int. Ed. 2019, 58, 3147–3150.

    Article  CAS  Google Scholar 

  53. Yang, X. B.; Aydin, E.; Xu, H.; Kang, J. X.; Hedhili, M.; Liu, W. Z.; Wan, Y. M.; Peng, J.; Samundsett, C.; Cuevas, A. et al. Tantalum nitride electron-selective contact for crystalline silicon solar cells. Adv. Energy Mater. 2018, 8, 1800608.

    Article  Google Scholar 

  54. Kim, G. T.; Park, T. K.; Chung, H.; Kim, Y. T.; Kwon, M. H.; Choi, J. G. Growth and characterization of chloronitroaniline crystals for optical parametric oscillators: I. XPS study of Mo-based compounds. Appl. Surf. Sci. 1999, 152, 35–43.

    Article  CAS  Google Scholar 

  55. Joy, V. T.; Srinivasan, T. K. K. Fourier-transform surface-enhanced Raman scattering study on thiourea and some substituted thioureas adsorbed on chemically deposited silver films. Spectrochim. Acta A:Mol. Biomol. Spectrosc. 1999, 55, 2899–2909.

    Article  Google Scholar 

  56. Song, X. J.; Wang, Y.; Zhao, F.; Li, Q. C.; Ta, H. Q.; Rümmeli, M. H.; Tully, C. G.; Li, Z. Z.; Yin, W. J.; Yang, L. T. et al. Plasmon-free surface-enhanced Raman spectroscopy using metallic 2D materials. ACS Nano 2019, 13, 8312–8319.

    Article  CAS  Google Scholar 

  57. Tao, L.; Chen, K.; Chen, Z. F.; Cong, C. X.; Qiu, C. Y.; Chen, J. J.; Wang, X. M.; Chen, H. J.; Yu, T.; **e, W. G. et al. 1T′ transition metal telluride atomic layers for plasmon-free SERS at femtomolar levels. J. Am. Chem. Soc. 2018, 140, 8696–8704.

    Article  CAS  Google Scholar 

  58. Hu, Y. M.; Li, J. Y.; Chen, N. Y.; Chen, C. Y.; Han, T. C.; Yu, C. C. Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices. J. Appl. Phys. 2017, 121, 085302.

    Article  Google Scholar 

  59. Tsetseris, L.; Kalfagiannis, N.; Logothetidis, S.; Pantelides, S. T. Structure and interaction of point defects in transition-metal nitrides. Phys. Rev. B 2007, 76, 224107.

    Article  Google Scholar 

  60. Tsetseris, L.; Kalfagiannis, N.; Logothetidis, S.; Pantelides, S. T. Trap** and release of impurities in TiN: A first-principles study. Phys. Rev. B 2008, 78, 094111.

    Article  Google Scholar 

  61. Pei, C. R.; Deng, L. J.; **ang, C. J.; Zhang, S.; Sun, D. Effect of the varied nitrogen vacancy concentration on mechanical and electrical properties of ZrNx thin films. Thin Solid Films 2019, 683, 57–66.

    Article  CAS  Google Scholar 

  62. Yu, J.; Yang, M. S.; Li, Z.; Liu, C. D.; Wei, Y. S.; Zhang, C.; Man, B. Y.; Lei, F. C. Hierarchical particle-in-quasicavity architecture for ultratrace in situ Raman sensing and its application in real-time monitoring of toxic pollutants. Anal. Chem. 2020, 92, 14754–14761.

    Article  CAS  Google Scholar 

  63. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  CAS  Google Scholar 

  64. Cañamares, M. V.; Chenal, C.; Birke, R. L.; Lombardi, J. R. DFT, SERS, and single-molecule SERS of crystal violet. J. Phys. Chem. C 2008, 112, 20295–20300.

    Article  Google Scholar 

  65. Zong, C.; Chen, C. J.; Wang, X.; Hu, P.; Liu, G. K.; Ren, B. Single-molecule level rare events revealed by dynamic surface-enhanced Raman spectroscopy. Anal. Chem. 2020, 92, 15806–15810.

    Article  CAS  Google Scholar 

  66. Chen, C. J.; Zong, C.; Liu, G. K.; Ren, B. Adsorption behavior of rhodamine 6G on silver surfaces studied by electrochemical surface-enhanced Raman spectroscopy. J. Electrochem. 2016, 22, 32–36.

    CAS  Google Scholar 

  67. Muehlethaler, C.; Considine, C. R.; Menon, V; Lin, W. C.; Lee, Y. H.; Lombardi, J. R. Ultrahigh Raman enhancement on monolayer MoS2. ACS Photonics 2016, 3, 1164–1169.

    Article  CAS  Google Scholar 

  68. Zheng, W. H.; Zheng, B. Y.; Yan, C. L.; Liu, Y.; Sun, X. X.; Qi, Z. Y.; Yang, T. F.; Jiang, Y.; Huang, W.; Fan, P. et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 2019, 6, 1802204.

    Article  Google Scholar 

  69. Li, M. Z.; Fan, X. C.; Gao, Y. M.; Qiu, T. W18O49/monolayer MoS2 heterojunction-enhanced Raman scattering. J. Phys. Chem. Lett. 2019, 10, 4038–4044.

    Article  CAS  Google Scholar 

  70. Yin, Y.; Miao, P.; Zhang, Y. M.; Han, J. C.; Zhang, X. H.; Gong, Y.; Gu, L.; Xu, C. Y.; Yao, T.; Xu, P. et al. Significantly increased Raman enhancement on MoX2 (X = S, Se) monolayers upon phase Transition. Adv. Funct. Mater. 2017, 27, 1606694.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11874108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Qiu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, L., Yao, H., Li, G. et al. Structural engineering of transition-metal nitrides for surface-enhanced Raman scattering chips. Nano Res. 15, 3794–3803 (2022). https://doi.org/10.1007/s12274-021-3904-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3904-z

Keywords

Navigation