Log in

Orderly defective superstructure for enhanced pseudocapacitive storage in titanium niobium oxide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Artificial defect engineering in transition metal oxides is of important terms for numerous applications. In the present work, we proposed an in-situ gas reduction strategy to introduce ordered defects into titanium niobium oxide embedding on vapor grew carbon fibers (Ti2Nb10O29−x@VGCFs). High-resolution transmission electron microscopy (HRTEM) and fast Fourier transform (FFT) simulation indicate that the ordered oxygen defects locate at interval layers, which leads to a new superstructure in Ti2Nb10O29. The ordered defects could provide extra active sites for lithium-ion storage and modulate ionic migration, resulting an enhanced pseudocapacitive performance. In addition, the excellent structural stability of the superstructure was proved by in-situ HRTEM under a harsh electrochemical process. Our work provides a directly observation of orderly defective superstructure in transition metal oxide, and its functionality on electrochemistry was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, A. L.; Cao, Z. Y.; Wang, J. W.; Wang, S. R.; Li, C. B.; Li, N.; **e, L. S.; **ang, Y.; Li, T. S.; Niu, X. B. et al. Vacancy defect modulation in hot-casted NiQx film for efficient inverted planar perovskite solar cells. J. Energy Chem. 2020, 48, 426–434.

    Article  Google Scholar 

  2. Li, G. W.; Blake, G. R.; Palstra, T. T. M. Vacancies in functional materials for clean energy storage and harvesting: The perfect imperfection. Chem. Soc. Rev. 2017, 46, 1693–1706.

    Article  CAS  Google Scholar 

  3. Uchaker, E.; Cao, G. Z. The role of intentionally introduced defects on electrode materials for alkali-ion batteries. Chem. Asian. J. 2015, 10, 1608–1617.

    Article  CAS  Google Scholar 

  4. Zhang, X. Y.; Liu, X. Q.; Zeng, Y. X.; Tong, Y. X.; Lu, X. H. Oxygen defects in promoting the electrochemical performance of metal oxides for supercapacitors: Recent advances and challenges. Small Methods 2020, 4, 1900823.

    Article  CAS  Google Scholar 

  5. Liu, T. T.; Peng, N.; Zhang, X. K.; Zheng, R. T.; **a, M. T.; Yu, H. X.; Shui, M.; **e, Y.; Shu, J. Controllable defect engineering enhanced bond strength for stable electrochemical energy storage. Nano Energy 2021, 79, 105460.

    Article  CAS  Google Scholar 

  6. Gao, X.; Ikuhara, Y. H.; Fisher, C. A. J.; Huang, R.; Kuwabara, A.; Moriwake, H.; Kohama, K.; Ikuhara, Y. Oxygen loss and surface degradation during electrochemical cycling of lithium-ion battery cathode material LiMn2O4. J. Mater. Chem. A 2019, 7, 8845–8854.

    Article  CAS  Google Scholar 

  7. Hahn, B. P.; Long, J. W.; Rolison, D. R. Something from nothing: Enhancing electrochemical charge storage with cation vacancies. Acc. Chem. Res. 2013, 46, 1181–1191.

    Article  CAS  Google Scholar 

  8. Sharifi-Asl, S.; Lu, J.; Amine, K.; Shahbazian-Yassar, R. Oxygen release degradation in Li-ion battery cathode materials: Mechanisms and mitigating approaches. Adv. Energy Mater. 2019, 9, 1900551.

    Article  Google Scholar 

  9. Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M. et al. Electrode degradation in lithium-ion batteries. ACS Nano 2020, 14, 1243–1295.

    Article  CAS  Google Scholar 

  10. Li, M.; Bi, X. X.; Amine, K.; Lu, J. Oxygen-based anion redox for lithium batteries. Acc. Chem. Res. 2020, 53, 1436–1444.

    Article  CAS  Google Scholar 

  11. Lee, D.; Gao, X.; Sun, L. X.; Jee, Y.; Poplawsky, J.; Farmer, T. O.; Fan, L. S.; Guo, E. J.; Lu, Q. Y.; Heller, W. T. et al. Colossal oxygen vacancy formation at a fluorite-bixbyite interface. Nat. Commun. 2020, 11, 1371.

    Article  CAS  Google Scholar 

  12. Colin, J. F.; Pralong, V.; Hervieu, M.; Caignaert, V.; Raveau, B. New titanoniobates (Li, H)2TiNbO5 and (Li, H)3TiNbO5: Synthesis, structure and properties. J. Mater. Chem. 2008, 18, 3121–3128.

    Article  CAS  Google Scholar 

  13. Deng, S. J.; Luo, Z. B.; Liu, Y. T.; Lou, X. M.; Lin, C. F.; Yang, C.; Zhao, H.; Zheng, P.; Sun, Z. L.; Li, J. B. et al. Ti2Nb10O29x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries. J. Power Sources 2017, 362, 250–257.

    Article  CAS  Google Scholar 

  14. Yao, Z. J.; **a, X. H.; Zhang, S. Z.; Zhou, C. A.; Pan, G. X.; **ong, Q. Q.; Wang, Y. D.; Wang, X. L.; Tu, J. P. Oxygen defect boosted N-doped Ti2Nb10O29 anchored on core-branch carbon skeleton for both high-rate liquid & solid-state lithium ion batteries. Energy Storage Mater. 2020, 25 555–562.

    Article  Google Scholar 

  15. Deng, S. J.; Zhang, Y.; **e, D.; Yang, L.; Wang, G. Z.; Zheng, X. S.; Zhu, J. F.; Wang, X. L.; Yu, Y.; Pan, G. X. et al. Oxygen vacancy modulated Ti2Nb10O29−x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. Nano Energy 2019, 58, 355–364.

    Article  CAS  Google Scholar 

  16. Bayeh, A. W.; Kabtamu, D. M.; Chang, Y. C.; Chen, G. C.; Chen, H. Y.; Lin, G. Y.; Liu, T. R.; Wondimu, T. H.; Wang, K. C.; Wang, C. H. Synergistic effects of a TiNb2O7-reduced graphene oxide nano-composite electrocatalyst for high-performance all-vanadium redox flow batteries. J. Mater. Chem. A 2018, 6, 13908–13917.

    Article  CAS  Google Scholar 

  17. Ejigu, A.; Edwards, M.; Walsh, D. A. Synergistic catalyst-support interactions in a graphene-Mn3O4 electrocatalyst for vanadium redox flow batteries. ACS Catal. 2015, 5, 7122–7130.

    Article  CAS  Google Scholar 

  18. Liu, A.; Zhang, H. T; **ng, C. X; Wang, Y. L.; Zhang, J. W.; Zhang, X. X.; Zhang, S. J. Intensified energy storage in high-voltage nanohybrid supercapacitors via the efficient coupling between TiNb2O7/holey-rGO nanoarchitectures and ionic liquid-based electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 21349–21361.

    Article  CAS  Google Scholar 

  19. Utetiwabo, W.; Yang, L.; Tufail, M. K.; Zhou, L.; Chen, R. J.; Lian, Y. M.; Yang, W. Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors. Chin. Chem. Lett. 2020, 31, 1474–1489.

    Article  CAS  Google Scholar 

  20. Shadike, Z.; Zhou, Y. N.; Chen, L. L.; Wu, Q.; Yue, J. L.; Zhang, N.; Yang, X. Q.; Gu, L.; Liu, X. S.; Shi, S. Q. et al. Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide. Nat. Commun. 2017, 8, 566.

    Article  Google Scholar 

  21. Wu, Y. X.; Nan, P. F.; Chen, Z. W.; Zeng, Z. Z.; Liu, R. H.; Dong, H. L.; **e, L.; **ao, Y. W.; Chen, Z. Q.; Gu, H. K. et al. Thermoelectric enhancements in PbTe alloys due to dislocation-induced strains and converged bands. Adv. Sci. 2020, 7, 1902628.

    Article  CAS  Google Scholar 

  22. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crys. A 1976, 32, 751–767.

    Article  Google Scholar 

  23. Lin, C. F.; Yu, S.; Zhao, H.; Wu, S. Q.; Wang, G. Z.; Yu, L.; Li, Y. F.; Zhu, Z. Z.; Li, J. B.; Lin, S. W. Defective Ti2Nb10O27.1: An advanced anode material for lithium-ion batteries. Sci. Rep. 2015, 5, 17836.

    Article  CAS  Google Scholar 

  24. Nakamura, K.; Sato, Y.; Takase, T. Analysis of oxidation behavior of vapor-grown carbon fiber (VGCF) under dry air. Mater. Lett. 2016, 180, 302–304.

    Article  CAS  Google Scholar 

  25. Zeng, Y. X.; Lai, Z. Z.; Han, Y.; Zhang, H. Z.; **e, S. L.; Lu, X. H. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 2018, 30, 1802396.

    Article  Google Scholar 

  26. Pham, V. H.; Nguyen-Phan, T. D.; Tong, X.; Rajagopalan, B.; Chung, J. S.; Dickerson, J. H. Hydrogenated TiO2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon 2018, 126, 135–144.

    Article  CAS  Google Scholar 

  27. Wang, X. F.; Shen, G. Z. Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy 2015, 15, 104–115.

    Article  Google Scholar 

  28. Orliukas, A. F.; Fung, K. Z.; Venckutė, V.; Kazlauskienė, V.; Miškinis, J.; Lelis, M. Structure, surface and broadband impedance spectroscopy of Li4Ti5O12 based ceramics with Nb and Ta. Solid State Ion. 2015, 271, 34–41.

    Article  CAS  Google Scholar 

  29. Yoon, W. S.; Balasubramanian, M.; Chung, K. Y.; Yang, X. Q.; McBreen, J.; Grey, C. P.; Fischer, D. A. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1−xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. J. Am. Chem. Soc. 2005, 49, 17479–17487.

    Article  Google Scholar 

  30. Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

    Article  Google Scholar 

  31. Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo do**: a strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434–9443.

    Article  CAS  Google Scholar 

  32. Lu, X.; Jian, Z. L.; Fang, Z.; Gu, L.; Hu, Y. S.; Chen, W.; Wang, Z. X.; Chen, L. Q. Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energ. Environ. Sci. 2011, 4, 2638–2644.

    Article  CAS  Google Scholar 

  33. Wei, M. D.; Wei, K. M.; Ichihara, M.; Zhou, H. S. Nb2O5 nanobelts: A lithium intercalation host with large capacity and high rate capability. Electrochem. Commun. 2008, 10, 980–983.

    Article  CAS  Google Scholar 

  34. Tang, K.; Mu, X. K.; Van Aken, P. A.; Yu, Y.; Maier, J. “Nano-Pearl-String” TiNb2O7 as anodes for rechargeable lithium batteries. Adv. Energy Mater. 2013, 3, 49–53.

    Article  CAS  Google Scholar 

  35. Le Viet, A.; Reddy, M. V.; Jose, R.; Chowdari, B. V. R.; Ramakrishna, S. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J. Phys. Chem. C 2010, 114, 664–671.

    Article  CAS  Google Scholar 

  36. Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem., Int. Ed. 2011, 50, 2904–2939.

    Article  CAS  Google Scholar 

  37. Liu, X. D.; Wang, H.; Zhang, S. Y.; Liu, G. Y.; **e, H. Q.; Ma, J. M. Design of well-defined porous Ti2Nb10O29/C microspheres assembled from nanoparticles as anode materials for high-rate lithium ion batteries. Electrochim. Acta 2018, 292, 759–768.

    Article  CAS  Google Scholar 

  38. Pham-Cong, D.; Kim, J.; Tran, V. T.; Kim, S. J.; Jeong, S. Y.; Choi, J. H.; Cho, C. R. Electrochemical behavior of interconnected Ti2Nb10O29 nanoparticles for high-power Li-ion battery anodes. Electrochim. Acta 2017, 236, 451–459.

    Article  CAS  Google Scholar 

  39. Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ. Environ. Sci. 2014, 7, 1597–1614.

    Article  CAS  Google Scholar 

  40. Raju, V.; Rains, J.; Gates, C.; Luo, W.; Wang, X. F.; Stickle, W. F.; Stucky, G. D.; Ji, X. L. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 2014, 14, 4119–4124.

    Article  CAS  Google Scholar 

  41. Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium-air battery. Nat. Chem. 2012, 4, 579–585.

    Article  CAS  Google Scholar 

  42. Yang, L.; Hu, M. X.; Lv, Q.; Zhang, H. W.; Yang, W.; Lv, R. Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity. Carbon 2020, 163, 288–296.

    Article  CAS  Google Scholar 

  43. Fei, L.; Lin, Q. L.; Yuan, B.; Chen, G.; **e, P.; Li, Y. L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance. ACS Appl. Mater. Interfaces 2013, 5, 5330–5335.

    Article  CAS  Google Scholar 

  44. Zhu, Y. R.; Li, J. Y.; Yun, X. R.; Chen, X. H.; Yao, J. J.; Lu, Z. H., Design and fabrication of advanced cathode and anode materials for hybrid supercapacitors based on graphitic carbon quantum dot-decorated reduced graphene oxide composite aerogels. ACS Appl. Energy Mater. 2021, 4, 714–729.

    Article  CAS  Google Scholar 

  45. Fleischmann, S.; Widmaier, M.; Schreiber, A.; Shim, H.; Stiemke, F. M.; Schubert, T. J. S.; Presser, V. High voltage asymmetric hybrid supercapacitors using lithium- and sodium-containing ionic liquids. Energy Storage Mater. 2019, 16, 391–399.

    Article  Google Scholar 

  46. Wei, J. S.; Ding, C.; Zhang, P.; Ding, H.; Niu, X. Q.; Ma, Y. Y.; Li, C.; Wang, Y. G.; **ong, H. M. Robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors. Adv. Mater. 2019, 31, 1806197.

    Google Scholar 

  47. Wang, X.; Yan, C.; Yan, J.; Sumboja, A.; Lee, P. S. Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device. Nano Energy 2015, 11, 765–772.

    Article  CAS  Google Scholar 

  48. Aravindan, V.; Sundaramurthy, J.; Jain, A.; Kumar, P. S.; Ling, W. C.; Ramakrishna, S.; Srinivasan, M. P.; Madhavi, S. Unveiling TiNb2O7 as an insertion anode for lithium ion capacitors with high energy and power density. ChemSusChem 2014, 7, 1858–1863.

    Article  CAS  Google Scholar 

  49. Jung, H. G.; Venugopal, N.; Scrosati, B.; Sun, Y. K. A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12 electrode. J. Power Sources 2013, 221, 266–271.

    Article  CAS  Google Scholar 

  50. Aravindan, V.; Shubha, N.; Ling, W. C.; Madhavi, S. Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host. J. Mater. Chem. A 2013, 7, 6145–6151.

    Article  Google Scholar 

  51. Wang, Q.; Wen, Z. H.; Li, J. H. A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv. Funct. Mater. 2006, 16, 2141–2146.

    Article  CAS  Google Scholar 

  52. Wang, H. X.; Cui, Y. Nanodiamonds for energy. Carbon Energy 2019, 1, 13–18.

    Article  Google Scholar 

  53. Shi, Y. Y.; Liu, G. J.; **, R. C.; Xu, H.; Wang, Q. Y.; Gao, S. M. Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: A review. Carbon Energy 2019, 1, 253–275.

    Article  CAS  Google Scholar 

  54. Zheng, S. H.; Wu, Z. S.; Zhou F.; Wang X.; Ma J. M.; Liu C.; He Y. B.; Bao X. H. All-solid-state planar integrated lithium ion microbatteries with extraordinary flexibility and high-temperature performance. Nano Energy, 2018, 51, 613–620.

    Article  CAS  Google Scholar 

  55. Zheng, S. H.; Ma, J. M.; Wu, Z. S.; Zhou, F.; He, Y. B.; Kang, F. Y.; Cheng, H. M.; Bao, X. H. All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ. Sci. 2018, 11, 2001–2009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R&D Program of China (No. 2018YFB1304902), the National Natural Science Foundation of China (Nos. 21975025, 21203008, and 11904372), the Bei**g Natural Science Foundation (No. 2172051). XRD measurements were performed in the Analysis & Testing Center, Bei**g Institute of Technology. We appreciated help from Dr. Hongwei Ma (Analysis & Testing Center) for XRD analysis. The authors acknowledge Analysis and Testing Center in Bei**g Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

Le Yang: Conceptualization, Methodology, Writing - review & editing, Data Curation

**feng Zeng: Investigation, Methodology, Writing - original draft, Data curation

Lei Zhou: Conceptualization

Ruiwen Shao: Supervision, Methodology, Resources, Validation

Wellars Utetiwabo: Writing - review & editing

Muhammad Khurram Tufail: Software, Visualization

Saisai Wang: Methodology

Wen Yang: Supervision, Project administration, Funding acquisition, Validation

Jiatao Zhang: Supervision, Validation.

Corresponding authors

Correspondence to Ruiwen Shao or Wen Yang.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zeng, J., Zhou, L. et al. Orderly defective superstructure for enhanced pseudocapacitive storage in titanium niobium oxide. Nano Res. 15, 1570–1578 (2022). https://doi.org/10.1007/s12274-021-3703-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3703-6

Keywords

Navigation