Log in

Well-defined coordination environment breaks the bottleneck of organic synthesis: Single-atom palladium catalyzed hydrosilylation of internal alkynes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-atom site (SAS) catalysts have attracted considerable attention due to their excellent performance. However, most of the current research models of SAS catalysts are based on inorganic catalysts, where “metal and coordination atom interaction” cannot simulate the fine-tuning effect of organic ligands on metal catalytic centers in homogeneous catalysts. Therefore, certain chemical transformations in homogeneous catalysis cannot be perfectly replicated. Here, we used porous organic ligand polymers as the carrier, which effectively changes the charge regulation of nanoparticles and monoatomic metal catalysts. Drawing lessons from traditional homogeneous metal/ligand catalysis, we introduced various functional groups into the ligand polymers to adjust the electronic properties, and successfully realized the hydrosilylation of internal alkynes with high catalytic performance. The selectivity and catalytic efficiency under the Pd@POL-1 catalyst system were improved compared with previous studies. The internal alkynes with various structures can complete this reaction, and the ratio of E/Z can reach up to 100:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  2. Yang, J.; Wang, X. L.; Qu, Y. T.; Wang, X.; Huo, H.; Fan, Q. K.; Wang, J.; Yang, L. M.; Wu, Y. E. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 2020, 10, 2001709.

    Article  CAS  Google Scholar 

  3. Hoque, M. A.; Gil-Sepulcre, M.; De Aguirre, A.; Elemans, J. A. A. W.; Moonshiram, D.; Matheu, R.; Shi, Y. Y.; Benet-Buchholz, J.; Sala, X.; Malfois, M. et al. Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes. Nat. Chem. 2020, 12, 1060–1066.

    Article  CAS  Google Scholar 

  4. **ong, Y.; Sun, W. M.; Han, Y. H.; **n, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene, Nano Res. 2021, DOI: https://doi.org/10.1007/s12274-020-3244-4.

  5. Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 14, 2418–2423.

    Google Scholar 

  6. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  7. Yang, L.; Liu, Y. T.; Park, Y.; Park, S. W.; Chang, S. Ni-mediated generation of “CN” unit from formamide and its catalysis in the cyanation reactions. ACS Catal. 2019, 9, 3360–3365.

    Article  CAS  Google Scholar 

  8. Zhao, B. Z.; Li, Y. Q.; Li, H. Y.; Belal, M.; Zhu, L.; Yin, G. Y. Synergistic Ni/Cu catalyzed migratory arylsilylation of terminal olefins. Sci. Bull. 2021, 66, 570–577.

    Article  CAS  Google Scholar 

  9. Tang, S.; Rauch, M.; Montag, M.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Catalytic oxidative deamination by water with H2 liberation. J. Am. Chem. Soc. 2020, 142, 20875–20882.

    Article  CAS  Google Scholar 

  10. Millet, M. M.; Algara-Siller, G.; Wrabetz, S.; Mazheika, A.; Girgsdies, F.; Teschner, D.; Seitz, F.; Tarasov, A.; Levchenko, S. V.; Schlögl, R. et al. Ni Single Atom Catalysts for CO2 Activation. J. Am. Chem. Soc. 2019, 141, 2451–2461.

    Article  CAS  Google Scholar 

  11. Chen, S.; Zhou, Y.; Li, J. Y.; Hu, Z. D.; Dong, F.; Hu, Y. X.; Wang, H. Q.; Wang, L. Z.; Ostrikov, K. K.; Wu Z. B. Single-atom Ru-Implanted metal-organic framework/MnO2 for the highly selective oxidation of NOx by plasma activation. ACS Catal. 2020, 10, 10185–10196.

    Article  CAS  Google Scholar 

  12. Sarma, B. B.; Kim, J.; Amsler, J.; Agostini, G.; Weidenthaler, C.; Pfänder, N.; Arenal, R.; Concepción, P.; Plessow, P.; Studt, F. et al. One-pot cooperation of single-atom Rh and Ru solid catalysts for a selective tandem olefin isomerization-hydrosilylation process. Angew. Chem., Int. Ed. 2020, 59, 5806–5815.

    Article  CAS  Google Scholar 

  13. Chen, Z. X.; Liu, C. B.; Liu, J.; Li, J.; **, S. B.; Chi, X.; Xu, H. S.; Park, I. H; Peng, X. W.; Li, X. et al. Cobalt single-atom-intercalated molybdenum disulfide for sulfide oxidation with exceptional chemoselectivity. Adv. Mater. 2020, 32, 1906437.

    Article  CAS  Google Scholar 

  14. Chen, Z. P.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuño, M. A.; López, N.; Collins, S. M.; Midgley, P. A.; Richard, S.; Vilé, G. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotech. 2018, 13, 702–707.

    CAS  Google Scholar 

  15. Luo, L. H.; Luo, J.; Li, H. L.; Ren, F. N.; Zhang, Y. F.; Liu, A. D.; Li, W. X.; Zeng, J. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat. Commun. 2021, 12, 1218.

    Article  CAS  Google Scholar 

  16. Li, X. J.; Zhao, S. Y.; Duan, X. G.; Zhang, H. Y.; Yang, S. Z.; Zhang, P. P.; Jiang, S. P.; Liu, S. M.; Sun, H. Q.; Wang, S. B. Coupling hydrothermal and photothermal single-atom catalysis toward excellent water splitting to hydrogen. Appl. Catal. B Environ. 2021, 283, 119660.

    Article  CAS  Google Scholar 

  17. Liu, K. P., Zhao, X. T., Ren, G. Q.; Yang, T.; Ren, Y. J.; Lee, A. F.; Su, Y.; Pan, X. L.; Zhang, J. C.; Chen, Z. Q. et al. Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nat. Commun. 2020, 11, 1263.

    Article  CAS  Google Scholar 

  18. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  19. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsym-metrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  Google Scholar 

  20. Wang, X. Y.; Li, L. L.; Fang, Z. P.; Zhang, Y. F.; Ni, J.; Lin, B. Y.; Zheng, L. R.; Au, C. T.; Jiang, L. L. Atomically dispersed Ru catalyst for low-temperature nitrogen activation to ammonia via an associative mechanism. ACS Catal. 2020, 10, 9504–9514.

    Article  CAS  Google Scholar 

  21. Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; **ong, Y.; Wu, Y.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

    Article  Google Scholar 

  22. Rebarchik, M.; Bhandari, S.; Kropp, T.; Mavrikakis, M. How noninnocent spectator species improve the oxygen reduction activity of single-atom catalysts: Microkinetic models from first-principles calculations. ACS Catal. 2020, 10, 9129–9135.

    Article  CAS  Google Scholar 

  23. Wang, H.; Liu, J. X.; Allard, L. F.; Lee, S.; Liu, J. L.; Li, H.; Wang, J. Q.; Wang, J.; Oh, S. H.; Li, W. et al. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 2019, 10, 3808.

    Article  Google Scholar 

  24. Kaiser, S. K.; Chen, Z. P.; Akl, D. F.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

    Article  CAS  Google Scholar 

  25. Zhang, Y. W.; Zhang, M.; Han, Z. B.; Huang, S. J.; Yuan, D. Q.; Su, W. P. Atmosphere-pressure methane oxidation to methyl trifluoroacetate enabled by a porous organic polymer-supported single-site palladium catalyst. ACS Catal. 2021, 11, 1008–1013.

    Article  CAS  Google Scholar 

  26. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-do** type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  27. Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; **ng, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670.

    Article  CAS  Google Scholar 

  28. Yan, J. Q.; Kong, L. Q.; Ji, Y. J.; White, J.; Li, Y. Y.; Zhang, J.; An, P. F.; Liu, S. Z.; Lee, S. T.; Ma, T. Y. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 2019, 10, 2149.

    Article  Google Scholar 

  29. Li, J. K.; Pršlja, P.; Shinagawa, T.; Fernández, A. J. M.; Krumeich, F.; Artyushkova, K.; Atanassov, P.; Zitolo, A.; Zhou, Y. C.; García-Muelas, R. et al. Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catal. 2019, 9, 10426–10439.

    Article  CAS  Google Scholar 

  30. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  31. Cao, L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

    Article  CAS  Google Scholar 

  32. Qu, Y. T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

    Article  CAS  Google Scholar 

  33. Hu, M. Y.; He, P.; Qiao, T. Z.; Sun, W.; Li, W. T.; Lian, J.; Li, J. H.; Zhu, S. F. Iron-catalyzed regiodivergent alkyne hydrosilylation. J. Am. Chem. Soc. 2020, 142, 16894–16902.

    Article  CAS  Google Scholar 

  34. Wisthoff, M. F.; Pawley, S. B.; Cinderella, A. P.; Watson, D. A. Stereoselective synthesis of Cis- and Trans-tetrasubstituted vinyl silanes using a silyl-heck strategy and hiyama conditions for their cross-coupling. J. Am. Chem. Soc. 2020, 142, 12051–12055.

    Article  CAS  Google Scholar 

  35. Kim, Y. B.; Kim, D.; Dighe, S. U.; Chang, S.; Park, J. W. Cobalt-hydride-catalyzed hydrosilylation of 3-alkynes accompanying π-bond migration. ACS Catal. 2021, 11, 1548–1553.

    Article  CAS  Google Scholar 

  36. Li, R. H; An, X. M.; Yang, Y.; Li, D. C.; Hu, Z. L.; Zhan, Z. P. Highly regio- and stereoselective heterogeneous hydrosilylation of terminal alkynes over cobalt-metalated porous organic polymer. Org. Lett. 2018, 20, 5023–5026.

    Article  CAS  Google Scholar 

  37. Sánchez-Page, B.; Munarriz, J.; Jiménez, M. V.; Pérez-Torrente, J. J.; Blasco, J.; Subias, G.; Passarelli, V.; Álvarez, P. β-(Z) Selectivity control by cyclometalated rhodium (III)-Triazolylidene homogeneous and heterogeneous terminal alkyne hydrosilylation catalysts. ACS Catal. 2020, 10, 13334–13351.

    Article  Google Scholar 

  38. Wen, H. N.; Wan, X. L.; Huang, Z. Asymmetric synthesis of silicon-stereogenic vinylhydrosilanes by cobalt-catalyzed regio- and enantioselective alkyne hydrosilylation with dihydrosilanes. Angew. Chem, Int. Ed. 2018, 57, 6319–6323.

    Article  CAS  Google Scholar 

  39. Yang, X. X.; Wang, C. Y. Dichotomy of manganese catalysis via organometallic or radical mechanism: Stereodivergent hydrosilylation of alkynes. Angew. Chem., Int. Ed. 2018, 57, 923–928.

    Article  CAS  Google Scholar 

  40. Puerta-Oteo, R.; Munarriz, J.; Polo, V.; Jiménez, M. V.; Pérez-Torrente, J. J. Carboxylate-assisted β-(Z) stereoselective hydrosilylation of terminal alkynes catalyzed by a zwitterionic Bis-NHC rhodium (III) complex. ACS Catal. 2020, 10, 7367–7380.

    Article  CAS  Google Scholar 

  41. Steiman, T. J.; Uyeda, C. Reversible substrate activation and catalysis at an intact metal-metal bond using a redox-active supporting ligand. J. Am. Chem. Soc. 2015, 137, 6104–6110.

    Article  CAS  Google Scholar 

  42. Polizzi, C.; Caporusso, A. M.; Vitulli, G.; Salvadori, P.; Pasero, M. Supported platinum atoms derived catalysts in the hydrosilylation of unsaturated substrates. J. Mol. Catal. 1994, 91, 83–90.

    Article  CAS  Google Scholar 

  43. Guo, W. S.; Pleixats, R.; Shafir, A.; Parella, T. Rhodium nanoflowers stabilized by a nitrogen-rich PEG-tagged substrate as recyclable catalyst for the stereoselective hydrosilylation of internal alkynes. Adv. Synth. Catal. 2015, 357, 89–99.

    Article  CAS  Google Scholar 

  44. Psyllaki, A.; Lykakis, I. N.; Stratakis, M. Reaction of hydrosilanes with alkynes catalyzed by gold nanoparticles supported on TiO2. Tetrahedron 2012, 68, 8724–8731.

    Article  CAS  Google Scholar 

  45. Sumida, Y.; Kato, T.; Yoshida, S.; Hosoya, T. Palladium-catalyzed regio- and stereoselective hydrosilylation of electron-deficient alkynes. Org. Lett. 2012, 14, 1552–1555.

    Article  CAS  Google Scholar 

  46. Planellas, M.; Guo, W. S.; Alonso, F.; Yus, M.; Shafir, A.; Pleixats, R.; Parella, T. Hydrosilylation of internal alkynes catalyzed by Tris-imidazolium salt-stabilized palladium nanoparticles. Adv. Synth. Catal. 2014, 356, 179–188.

    Article  CAS  Google Scholar 

  47. Reddy, C. B.; Shil, A. K.; Guha, N. R.; Sharma, D.; Das, P. Solid supported palladium (0) Nanoparticles: An efficient heterogeneous catalyst for regioselective hydrosilylation of alkynes and Suzuki coupling of β-Arylvinyl iodides. Catal. Lett. 2014, 144, 1530–1536.

    Article  Google Scholar 

  48. Li, W. H.; Li, C. Y.; **ong, H. Y.; Liu, Y.; Huang, W. Y.; Ji, G. J.; Jiang, Z.; Tang, H. T.; Pan, Y. M.; Ding, Y. J. Constructing mononuclear palladium catalysts by precoordination/solvothermal polymerization: Recyclable catalyst for regioselective oxidative heck reactions. Angew. Chem., Int. Ed. 2019, 58, 2448–2453.

    Article  CAS  Google Scholar 

  49. Feng, S. Q.; Song, X. G.; Liu, Y.; Lin, X. S.; Yan, L.; Liu, S. Y.; Dong, W. R.; Yang, X. M.; Jiang, Z.; Ding, Y. J. In situ formation of mononuclear complexes by reaction-induced atomic dispersion of supported noble metal nanoparticles. Nat. Commun. 2019, 10, 5281.

    Article  Google Scholar 

  50. Huang, W. Y.; Wang, G. Q.; Li, W. H.; Li, T. T.; Ji, G. J.; Ren, S. C.; Jiang, M.; Yan, L.; Tang, H. T.; Pan, Y. M. et al. Porous ligand creates new reaction route: Bifunctional single-atom palladium catalyst for selective distannylation of terminal alkynes. Chem 2020, 6, 2300–2313.

    Article  CAS  Google Scholar 

  51. Nishizawa, A.; Takahira, T.; Yasui, K.; Fujimoto, H.; Iwai, T.; Sawamura, M.; Chatani, N.; Tobisu, M. Nickel-catalyzed decar-boxylation of aryl carbamates for converting phenols into aromatic amines. J. Am. Chem. Soc. 2019, 141, 7261–7265.

    Article  CAS  Google Scholar 

  52. Iwai, T.; Harada, T.; Hara, K.; Sawamura, M. Threefold cross-linked polystyrene-triphenylphosphane hybrids: Mono-P-Ligating behavior and catalytic applications for aryl chloride cross-coupling and C(sp3)-H Borylation. Angew. Chem., Int. Ed. 2013, 52, 12322–12326.

    Article  CAS  Google Scholar 

  53. Cai, R.; Ye, X. H.; Sun, Q.; He, Q. Q.; He, Y.; Ma, S. Q.; Shi, X. D. Anchoring Triazole-Gold(I) complex into porous organic polymer to boost the stability and reactivity of gold(I) catalyst. ACS Catal. 2017, 7, 1087–1092.

    Article  CAS  Google Scholar 

  54. Zhang, J.; Wang, Z. Y.; Chen, W. X.; **ong, Y.; Cheong, W. C.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C.; Peng, Q. et al. Tuning Polarity of Cu-O bond in heterogeneous Cu catalyst to promote additive-free hydroboration of alkynes. Chem, 2020, 6, 725–737.

    Article  CAS  Google Scholar 

  55. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2170006.

    Article  Google Scholar 

  56. Jiao, J. Q.; Pan, Y.; Wang, B.; Yang, W. J.; Liu, S. J.; Zhang, C. Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core-shell electrocatalysts for rechargeable zinc-air batteries. J. Energy Chem. 2021, 53, 364–371.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Nos. 22061003 and 21861006), Guangxi Natural Science Foundation of China (No. 2019GXNSFAA245027), Guangxi Key R&D Program (No. AB18221005), Science and Technology Major Project of Guangxi (No. AA17204058-21), Guangxi Science and Technology Base, and Special Talents (No. AD19110027) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Tang.

Electronic Supplementary Material

12274_2021_3694_MOESM1_ESM.pdf

Well-defined coordination environment breaks the bottleneck of organic synthesis: Single-atom palladium catalyzed hydrosilylation of internal alkynes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Ye, B., Li, S. et al. Well-defined coordination environment breaks the bottleneck of organic synthesis: Single-atom palladium catalyzed hydrosilylation of internal alkynes. Nano Res. 15, 1500–1508 (2022). https://doi.org/10.1007/s12274-021-3694-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3694-3

Keywords

Navigation