Log in

Isolated ultrasmall Bi nanosheets for efficient CO2-to-formate electroreduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical reduction of CO2 to valuable formate as liquid fuel is a promising way to alleviate the greenhouse effect. The edge active sites in bismuth (Bi) nanosheets play a critical role in the electrochemical reduction of CO2 into formate, which enable the operation of CO2 reduction with high cathodic energy efficiency, especially under large current densities of ≥ 200 mA/cm2. However, the undesirable reconstruction of small Bi nanosheets into large nanosheets leads to the decreasing of edge active sites during electrocatalysis. Here we report stable isolated ultrasmall bismuth nanosheets-synthesized by in-situ electrochemical transformation of ligands covered bismuth vanadate-on silver nanowires as an efficient electrocatalyst for CO2-to-formate reduction. The cooperative electrocatalyst achieves a formate current density of 186 mA/cm2 and a cathodic energy efficiency of 75% for formate, which is the only best compared to the literature results. Operando Raman and morphologic measurements demonstrate that the excellent energy utilization of the electrocatalyst is originated from the rich edge active sites with Bi-O species of the ultrasmall Bi nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serna, L.; Fenoll, C. Co** with human CO2 emissions. Nature 2000, 408, 656–657.

    Article  CAS  Google Scholar 

  2. Lue, S. J.; Liu, N. Y.; Rajesh Kumar, S.; Tseng, K. C. Y.; Wang, B. Y.; Leung, C. H. Experimental and one-dimensional mathematical modeling of different operating parameters in direct formic acid fuel cells. Energies 2017, 10, 1972.

    Article  Google Scholar 

  3. Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973.

    Article  CAS  Google Scholar 

  4. Zhang, J.; Tang, J.; Liu, L. J.; Wang, J. The evolution of catalytically active calcium catalyst during steam gasification of lignite char. Carbon 2021, 172, 162–173.

    Article  CAS  Google Scholar 

  5. **a, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W. T.; Stavitski, E.; Alshareef, H. N.; Wang, H. T. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy. 2019, 4, 776–785.

    Article  CAS  Google Scholar 

  6. Ren, W. H.; Zhao, C. Paths towards enhanced electrochemical CO2 reduction. Natl. Sci. Rev. 2020, 7, 7–9.

    Article  Google Scholar 

  7. Zheng, X. L.; De Luna, P.; de Arquer, F. P. G.; Zhang, B.; Becknell, N.; Ross, M. B.; Li, Y. F.; Banis, M. N.; Li, Y. Z.; Liu, M. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 2017, 1, 794–805.

    Article  CAS  Google Scholar 

  8. Sun, S. N.; Li, N.; Liu, J.; Ji, W. X.; Dong, L. Z.; Wang, Y. R.; Lan, Y. Q. Identification of the activity source of CO2 electroreduction by strategic catalytic site distribution in stable supramolecular structure system. Natl. Sci. Rev. 2021, 8, nwaa195.

    Article  CAS  Google Scholar 

  9. Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

    Article  CAS  Google Scholar 

  10. Shi, Y. M.; Ji, Y.; Long, J.; Liang, Y.; Liu, Y.; Yu, Y. F.; **ao, J. P.; Zhang, B. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 2020, 11, 3415.

    Article  CAS  Google Scholar 

  11. Yang, W. F.; Chen, S.; Ren, W. H.; Zhao, Y.; Chen, X. J.; Jia, C.; Liu, J. N.; Zhao, C. Nanostructured amalgams with tuneable silver-mercury bonding sites for selective electroreduction of carbon dioxide into formate and carbon monoxide. J. Mater. Chem. A 2019, 7, 15907–15912.

    Article  CAS  Google Scholar 

  12. Zhang, Z. R.; Ahmad, F.; Zhao, W. H.; Yan, W. S.; Zhang, W. H.; Huang, H. W.; Ma, C.; Zeng, J. Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide. Nano Lett. 2019, 19, 4029–4034.

    Article  CAS  Google Scholar 

  13. Pang, R. C.; Tian, P. F.; Jiang, H. L.; Zhu, M. H.; Su, X. Z.; Wang, Y.; Yang, X. L.; Zhu, Y. H.; Song, L.; Li, C. Z. Tracking structural evolution: Operando regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction. Natl. Sci. Rev. 2020, nwaa187, DOI: https://doi.org/10.1093/nsr/nwaa187.

  14. Yang, F.; Elnabawy, A. O.; Schimmenti, R.; Song, P.; Wang, J. W.; Peng, Z. Q.; Yao, S.; Deng, R. P.; Song, S. Y.; Lin, Y. et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088.

    Article  CAS  Google Scholar 

  15. Yang, J.; Wang, X. L.; Qu, Y. T.; Wang, X.; Huo, H.; Fan, Q. K.; Wang, J.; Yang, L. M.; Wu, Y. E. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 2020, 10, 2001709.

    Article  CAS  Google Scholar 

  16. Li, L. Q.; Tang, C.; **a, B. Q.; **, H. Y.; Zheng, Y.; Qiao, S. Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902–2908.

    Article  CAS  Google Scholar 

  17. Yao, D. Z.; Tang, C.; Li, L. Q.; **a, B. Q.; Vasileff, A.; **, H. Y.; Zhang, Y. Z.; Qiao, S. Z. In situ fragmented bismuth nanoparticles for electrocatalytic nitrogen reduction. Adv. Energy Mater. 2020, 10, 2001289.

    Article  CAS  Google Scholar 

  18. Zhang, L.; Chen, D. R.; Jiao, X. L. Monoclinic structured BiVO4 nanosheets: Hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B 2006, 110, 2668–2673.

    Article  CAS  Google Scholar 

  19. Koh, J. H.; Won, D. H.; Eom, T.; Kim, N. K.; Jung, K. D.; Kim, H.; Hwang, Y. J.; Min, B. K. Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst. ACS Catal. 2017, 7, 5071–5077.

    Article  CAS  Google Scholar 

  20. Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.

    Article  CAS  Google Scholar 

  21. Lu, P. L.; Gao, D. L.; He, H. Y.; Wang, Q. X.; Liu, Z. J.; Dipazir, S.; Yuan, M. L.; Zu, W. Y.; Zhang, G. J. Facile synthesis of a bismuth nanostructure with enhanced selectivity for electrochemical conversion of CO2 to formate. Nanoscale 2019, 11, 7805–7812.

    Article  CAS  Google Scholar 

  22. Zhou, J. H.; Yuan, K.; Zhou, L.; Guo, Y.; Luo, M. Y.; Guo, X. Y.; Meng, Q. Y.; Zhang, Y. W. Boosting electrochemical reduction of CO2 at a low overpotential by amorphous Ag-Bi-S-O decorated Bi0 nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 14197–14201.

    Article  CAS  Google Scholar 

  23. Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2018, 2, 0105.

    Article  CAS  Google Scholar 

  24. He, S. S.; Ni, F. L.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Bai, H. P.; Liu, G. J.; Zhang, Y.; Li, Y. Y.; Zhang, B. et al. The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem., Int. Ed. 2018, 57, 16114–16119.

    Article  CAS  Google Scholar 

  25. Zhong, H. X.; Qiu, Y. L.; Zhang, T. T.; Li, X. F.; Zhang, H. M.; Chen, X. B. Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO2 to formate. J. Mater. Chem. A 2016, 4, 13746–13753.

    Article  CAS  Google Scholar 

  26. Cao, C. S.; Ma, D. D.; Gu, J. F.; **e, X. Y.; Zeng, G.; Li, X. F.; Han, S. G.; Zhu, Q. L.; Wu, X. T.; Xu, Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem., Int. Ed. 2020, 59, 15014–15020.

    Article  CAS  Google Scholar 

  27. Ma, D. D.; Han, S. G.; Cao, C. S.; Li, X.; Wu, X. T.; Zhu, Q. L. Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine. Appl. Catal. B Environ. 2020, 264, 118530.

    Article  Google Scholar 

  28. Ma, W. X.; Bu, J.; Liu, Z. P.; Yan, C.; Yao, Y.; Chang, N. H.; Zhang, H. P.; Wang, T.; Zhang, J. Monoclinic scheelite bismuth vanadate derived bismuthene nanosheets with rapid kinetics for electrochemically reducing carbon dioxide to formate. Adv. Funct. Mater. 2021, 31, 2006704.

    Article  CAS  Google Scholar 

  29. Fan, L.; **a, C.; Zhu, P.; Lu, Y.; Wang, H. T. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 2020, 11, 3633.

    Article  CAS  Google Scholar 

  30. Gong, Q. F.; Ding, P.; Xu, M. Q.; Zhu, X. R.; Wang, M. Y.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.

    Article  Google Scholar 

  31. Wang, Y. T.; Li, Y. H.; Liu, J. Z.; Dong, C. X.; **ao, C. Q.; Cheng, L.; Jiang, H. L.; Jiang, H.; Li, C. Z. BiPO4-derived 2D nanosheets for efficient electrocatalytic reduction of CO2 to liquid fuel. Angew. Chem., Int. Ed. 2021, 60, 7687–7685.

    Google Scholar 

  32. Deng, P. L.; Wang, H. M.; Qi, R. J.; Zhu, J. X.; Chen, S. H.; Yang, F.; Zhou, L.; Qi, K.; Liu, H. F.; **a, B. Y. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2020, 10, 743–750.

    Article  CAS  Google Scholar 

  33. Yi, L. C.; Chen, J. X.; Shao, P.; Huang, J. H.; Peng, X. X.; Li, J. W.; Wang, G. X.; Zhang, C.; Wen, Z. H. Molten-salt-assisted synthesis of bismuth nanosheets for long-term continuous electrocatalytic conversion of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 20112–20119.

    Article  CAS  Google Scholar 

  34. Xu, X. S.; Xu, Y. X.; Xu, F.; Jiang, G.; Jian, J. S.; Yu, H. W.; Zhang, E. M.; Shchukin, D.; Kaskel, S.; Wang, H. Q. Black BiVO4: Size tailored synthesis, rich oxygen vacancies, and sodium storage performance. J. Mater. Chem. A 2020, 8, 1636–1645.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21808061, 21838003, 91834301, and 22008069), the Shanghai Scientific and Technological Innovation Project (Nos. 18JC1410500 and 19JC1410400), the Innovation Program of Shanghai Municipal Education Commission, “the Fundamental Research Funds for the Central Universities” (No. 222201718002), and the Shanghai Sailing Program (No. 20YF1410200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhang Li or Chunzhong Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, Y., Wang, Y. et al. Isolated ultrasmall Bi nanosheets for efficient CO2-to-formate electroreduction. Nano Res. 15, 1409–1414 (2022). https://doi.org/10.1007/s12274-021-3677-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3677-4

Keywords

Navigation