Log in

Intracellular pH-responsive iron-catechin nanoparticles with osteogenic/anti-adipogenic and immunomodulatory effects for efficient bone repair

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

This article has been updated

Abstract

Osteoimmunomodulation was identified as a new and important strategy to enhance osteogenic differentiation together with other osteogenic approaches. However, approaches regulating osteogenic differentiation and macrophage polarization to remodel an osteoinductive microenvironment are separate and complicated. Therefore, the design and synthesis of one biomaterial that couples the osteogenic performance and immunomodulatory ability is a major challenge for efficient bone repair. In this study, self-assembled iron-catechin nanoparticles (Fe-cat NPs) were designed based on the coordinated reaction between iron ions and catechin and synthesized via a facile one-pot strategy. Interestingly, Fe-cat NPs show intracellular pH-responsive disassembly and release catechin molecules under the low pH of lysosomes after endocytosis. This strategy delivers catechin intracellularly and then enhances the osteogenic differentiation while inhibits the adipogenic differentiation of human adipose-derived stem cells (hADSCs). More importantly, Fe-cat NPs remodel the osteogenic immune microenvironment by resisting inflammation and promoting M2 polarization of macrophages. As a promising metal-organic nanodrug, the intracellular pH-responsive Fe-cat NPs significantly enhance the therapeutic effect of bone regneration by orchestrating osteogenic differentiation and immunomodulation, which may have great potential in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 09 August 2021

    The graphical abstract is missing on original upload.

References

  1. Bianco, P.; Robey, P. G. Stem cells in tissue engineering. Nature 2001, 414, 118–121.

    Article  CAS  Google Scholar 

  2. Seong, J. M.; Kim, B. C.; Park, J. H.; Kwon, I. K.; Mantalaris, A.; Hwang, Y. S. Stem cells in bone tissue engineering. Biomed. Mater. 2010, 5, 062001.

    Article  Google Scholar 

  3. Fraser, J. K.; Zhu, M.; Wulur, I.; Alfonso, Z. Adipose-derived stem cells. In Mesenchymal Stem Cells. Prockop, D. J.; Bunnell, B. A.; Phinney, D. G., Eds.; Humana Press: Totowa, 2008; pp 59–67.

    Chapter  Google Scholar 

  4. Bunnell, B. A.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods 2008, 45, 115–120.

    Article  CAS  Google Scholar 

  5. Yang, X.; Li, Y. Y.; Liu, X. J.; Zhang, R. R.; Feng, Q. L. In vitro uptake of hydroxyapatite nanoparticles and their effect on osteogenic differentiation of human mesenchymal stem cells. Stem Cells Int. 2018, 2018, 2036176.

    Article  Google Scholar 

  6. Xu, C.; **ao, L.; Cao, Y. X.; He, Y.; Lei, C.; **ao, Y.; Sun, W. J.; Ahadian, S.; Zhou, X. T. Khademhosseini, A. et al. Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Res. 2020, 13, 2323–2331.

    Article  CAS  Google Scholar 

  7. Li, J. C.; Chen, Y.; Kawazoe, N.; Chen, G. P. Ligand density-dependent influence of arginine-glycine-aspartate functionalized gold nanoparticles on osteogenic and adipogenic differentiation of mesenchymal stem cells. Nano Res. 2018, 11, 1247–1261.

    Article  CAS  Google Scholar 

  8. Qin, H.; Zhu, C.; An, Z. Q.; Jiang, Y.; Zhao, Y. C.; Wang, J. X.; Liu, X.; Hui, B.; Zhang, X. L.; Wang, Y. Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int. J. Nanomedicine 2014, 9, 2469–2478.

    Article  Google Scholar 

  9. Lv, L. W.; Liu, Y. S.; Zhang, P.; Zhang, X.; Liu, J. Z.; Chen, T.; Su, P. L.; Li, H. Y.; Zhou, Y. S. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials 2015, 39, 193–205.

    Article  CAS  Google Scholar 

  10. Wang, Q. W.; Chen, B.; Ma, F.; Lin, S. K.; Cao, M.; Li, Y.; Gu, N. Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Res. 2017, 10, 626–642.

    Article  Google Scholar 

  11. Kang, H.; Zhang, K. Y.; Pan, Q.; Lin, S. E.; Wong, D. S. H.; Li, J. M.; Lee, W. Y. W.; Yang, B. G.; Han, F. X.; Li, G. et al. Remote control of intracellular calcium using Upconversion Nanotransducers regulates stem cell differentiation in vivo. Adv. Funct. Mater. 2018, 28, 1802642.

    Article  Google Scholar 

  12. Franz, S.; Rammelt, S.; Scharnweber, D.; Simon, J. C. Immune responses to implants — A review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011, 32, 6692–6709.

    Article  CAS  Google Scholar 

  13. **, S. S.; He, D. Q.; Luo, D.; Wang, Y.; Yu, M.; Guan, B.; Fu, Y.; Li, Z. X.; Zhang, T.; Zhou, Y. H. et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration. ACS Nano 2019, 13, 6581–6595.

    Article  CAS  Google Scholar 

  14. Zhao, D. W.; Liu, C.; Zuo, K. Q.; Su, P.; Li, L. B.; **ao, G. Y.; Cheng, L. Strontium-zinc phosphate chemical conversion coating improves the osseointegration of titanium implants by regulating macrophage polarization. Chem. Eng. J. 2021, 408, 127362.

    Article  CAS  Google Scholar 

  15. Mahon, O. R.; Browe, D. C.; Gonzalez-Fernandez, T.; Pitacco, P.; Whelan, I. T.; Von Euw, S.; Hobbs, C.; Nicolosi, V.; Cunningham, K. T.; Mills, K. H. G. et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials 2020, 239, 119833.

    Article  CAS  Google Scholar 

  16. Chen, Z. T.; Klein, T.; Murray, R. Z.; Crawford, R.; Chang, J.; Wu, C. T.; **ao, Y. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater. Today 2016, 19, 304–321.

    Article  CAS  Google Scholar 

  17. Pajarinen, J.; Lin, T.; Gibon, E.; Kohno, Y.; Maruyama, M.; Nathan, K.; Lu, L.; Yao, Z. Y.; Goodman, S. B. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 2019, 196, 80–89.

    Article  CAS  Google Scholar 

  18. Mantovani, A.; Biswas, S. K.; Galdiero, M. R.; Sica, A.; Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 2013, 229, 176–185.

    Article  CAS  Google Scholar 

  19. Martinez, F. O.; Sica, A.; Mantovani, A.; Locati, M. Macrophage activation and polarization. Front. Biosci. 2008, 13, 453–461.

    Article  CAS  Google Scholar 

  20. Wei, Y. J.; Tsai, K. S.; Lin, L. C.; Lee, Y. T.; Chi, C. W.; Chang, M. C.; Tsai, T. H.; Hung, S. C. Catechin stimulates osteogenesis by enhancing PP2A activity in human mesenchymal stem cells. Osteoporos. Int. 2011, 22, 1469–1479.

    Article  CAS  Google Scholar 

  21. Chen, C. H.; Ho, M. L.; Chang, J. K.; Hung, S. H.; Wang, G. J. Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos. Int. 2005, 16, 2039–2045.

    Article  CAS  Google Scholar 

  22. Jiang, Y.; Ding, S. J.; Li, F.; Zhang, C.; Sun-Waterhouse, D.; Chen, Y. L.; Li, D. P. Effects of (+)-catechin on the differentiation and lipid metabolism of 3T3-L1 adipocytes. J. Funct. Foods 2019, 62, 103558.

    Article  CAS  Google Scholar 

  23. Furuyashiki, T.; Nagayasu, H.; Aoki, Y.; Bessho, H.; Hashimoto, T.; Kanazawa, K.; Ashida, H. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARγ2 and C/EBPα in 3T3-L1 cells. Biosci. Biotechnol. Biochem. 2004, 68, 2353–2359.

    Article  CAS  Google Scholar 

  24. Huang, J.; Wang, Y.; **e, Z.; Zhou, Y.; Zhang, Y.; Wan, X. The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur. J. Clin. Nutr. 2014, 68, 1075–1087.

    Article  CAS  Google Scholar 

  25. He, J. T.; Xu, L.; Yang, L.; Wang, X. F. Epigallocatechin gallate is the most effective catechin against antioxidant stress via hydrogen peroxide and radical scavenging activity. Med. Sci. Monit. 2018, 24, 8198–8206.

    Article  CAS  Google Scholar 

  26. Zanwar, A. A.; Badole, S. L.; Shende, P. S.; Hegde, M. V.; Bodhankar, S. L. Chapter 21 — Antioxidant role of Catechin in health and disease. In Polyphenols in Human Health and Disease. Watson, R. R.; Preedy, V. R.; Zibadi, S., Eds.; Academic Press: San Diego, 2014; pp 267–271.

    Chapter  Google Scholar 

  27. Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered Chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849–857.

    Article  CAS  Google Scholar 

  28. Xu, C. N.; Wang, Y. B.; Yu, H. Y.; Tian, H. Y.; Chen, X. S. Multifunctional Theranostic nanoparticles derived from fruit-extracted Anthocyanins with dynamic disassembly and elimination abilities. ACS Nano 2018, 12, 8255–8265.

    Article  CAS  Google Scholar 

  29. Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; van Koeverden, M. P.; Such, G. K.; Cui, J. W.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154–157.

    Article  CAS  Google Scholar 

  30. Zhou, J. J.; Lin, Z. X.; Ju, Y.; Rahim, M.; Richardson, J. J.; Caruso, F. Polyphenol-mediated assembly for particle engineering. Acc. Chem. Res. 2020, 53, 1269–1278.

    Article  CAS  Google Scholar 

  31. Nairz, M.; Weiss, G. Iron in infection and immunity. Mol. Aspects Med. 2020, 75, 100864.

    Article  CAS  Google Scholar 

  32. Agoro, R.; Taleb, M.; Quesniaux, V. F. J.; Mura, C. Cell iron status influences macrophage polarization. PLoS One 2018, 13, e0196921.

    Article  Google Scholar 

  33. Wang, Y. Q.; Zhang, J.; Zhang, C. Y.; Li, B. J.; Wang, J. J.; Zhang, X. J.; Li, D.; Sun, S. K. Functional-protein-assisted fabrication of Fe-gallic acid coordination polymer nanonetworks for localized photothermal therapy. ACS Sustainable Chem. Eng. 2018, 7, 994–1005.

    Article  Google Scholar 

  34. Liu, F. Y.; He, X. X.; Chen, H. D.; Zhang, J. P.; Zhang, H. M.; Wang, Z. X. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nat. Commun. 2015, 6, 8003.

    Article  CAS  Google Scholar 

  35. Li, L. C.; Tian Y. Zeta potential. In Encyclopedia of Pharmaceutical Technology. Swarbrick, J.; Boylan J. C., Eds.; Marcel Dekker Inc.: New York, 1997; pp 429–458.

    Google Scholar 

  36. Kong, Y.; Ma, B. J.; Liu, F.; Chen, D.; Zhang, S.; Duan, J. Z.; Huang, Y.; Sang, Y. H.; Wang, J. J.; Li, D. et al. Cellular stemness maintenance of human adipose-derived stem cells on ZnO nanorod arrays. Small 2019, 15, 1904099.

    Article  CAS  Google Scholar 

  37. Zhang, S. L.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh S. Size-dependent endocytosis of nanoparticles. Adv. Mater. 2009, 21, 419–424.

    Article  Google Scholar 

  38. Zou, W.; Rohatgi, N.; Brestoff, J. R.; Li, Y. J.; Barve, R. A.; Tycksen, E.; Kim, Y.; Silva, M. J.; Teitelbaum, S. L. Ablation of fat cells in adult mice induces massive bone gain. Cell Metab. 2020, 32, 801–813.e6.

    Article  CAS  Google Scholar 

  39. Zhang, K. Y.; Jia, Z. F.; Yang, B. G.; Feng, Q.; Xu, X.; Yuan, W. H.; Li, X. F.; Chen, X. Y.; Duan, L.; Wang, D. P. et al. Adaptable hydrogels mediate cofactor-assisted activation of biomarker-responsive drug delivery via positive feedback for enhanced tissue regeneration. Adv. Sci. 2018, 5, 1800875.

    Article  Google Scholar 

  40. Feng, Q.; Xu, J. K.; Zhang, K. Y.; Yao, H.; Zheng, N. Y.; Zheng, L. Z.; Wang, J. L.; Wei, K. C.; **ao, X. F.; Qin, L. et al. Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects. ACS Cent. Sci. 2019, 5, 440–450.

    Article  CAS  Google Scholar 

  41. Wood, M. J.; Leckenby, A.; Reynolds, G.; Spiering, R.; Pratt, A. G.; Rankin, K. S.; Isaacs, J. D.; Haniffa, M. A.; Milling, S.; Hilkens, C. M. U. Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients. JCI Insight 2019, 4, e125325.

    Article  Google Scholar 

  42. Fan, F. Y.; Sang, L. X.; Jiang M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 2017, 22, 484.

    Article  Google Scholar 

  43. Cuzzocrea, S.; Mazzon, E.; Dugo, L.; Genovese, T.; Di Paola, R.; Ruggeri, Z.; Vegeto, E.; Caputi, A. P.; Van de Loo, F. A. J.; Puzzolo, D. et al. Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 2003, 144, 1098–1107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (No. 2017YFB0405400), National Natural Science Foundation of China (No. 51732007), Major Innovation Projects in Shandong Province (No. 2018YFJH0503), Natural Science Foundation of Shandong Province (No. ZR2020YQ35), Young Elite Scientist Sponsorship Program by CAST, and the Project of “20 items of University” of **an (No. 2018GXRC031). The authors are thankful for the support from the Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, The authors thank Translational Medicine Core Facility of Shandong University for consultation and instrument availability that supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Liu, Shuhua Wang or Hong Liu.

Electronic Supplementary Material

12274_2021_3618_MOESM1_ESM.pdf

Intracellular pH-responsive iron-catechin nanoparticles with osteogenic/anti-adipogenic and immunomodulatory effects for efficient bone repair

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y., Liu, F., Ma, B. et al. Intracellular pH-responsive iron-catechin nanoparticles with osteogenic/anti-adipogenic and immunomodulatory effects for efficient bone repair. Nano Res. 15, 1153–1161 (2022). https://doi.org/10.1007/s12274-021-3618-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3618-2

Keywords

Navigation