Log in

Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 19 July 2021

This article has been updated

Abstract

Fine-tuning of the coordination environment of single-atom catalysts (SACs) is effective to optimize their catalytic performances, yet it remains challenging due to the vulnerability of SACs. Herein, we report a new approach to engineering the coordination environment of M-N-C (M = Fe, Co, and Ni) SACs by using glutamic acid as the N/C source and pyrolysis atmosphere as a regulator. Compared with that in N2, NH3 was able to promote the do** of N at T < 700 °C yet etch the N-species at higher temperatures, by which the M-N coordination number (CN) and the electronic structure were delicately tuned. It was found that the electron density of Ni single atoms increased with the decrease of Ni-N CN. As a consequence, the capability of Ni-N-C to dissociate H2 was greatly enhanced and a higher catalytic activity in chemoselective hydrogenation of functionalized nitroarenes was achieved. Moreover, this modulation method could be applied to other transition metals including Fe and Co. In particular, the as-synthesized Co-N-C SAC afforded a turnover frequency of 152.3 h−1 with 99% selectivity to 3-vinylaniline in the hydrogenation of 3-nitrostyrene, which was the highest ever reported thus far and was at least one order of magnitude more active than state-of-the-art noble-metal-free M-N-C catalysts, demonstrating the great potential of engineering the coordination environment of SACs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Downing, R. S.; Kunkeler, P. J.; van Bekkum, H. Catalytic syntheses of aromatic amines. Catal. Today 1997, 37, 121–136.

    Article  CAS  Google Scholar 

  2. Macino, M.; Barnes, A. J.; Althahban, S. M.; Qu, R. Y.; Gibson, E. K.; Morgan, D. J.; Freakley, S. J.; Dimitratos, N.; Kiely, C. J.; Gao, X. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2019, 2, 873–881.

    Article  CAS  Google Scholar 

  3. Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

    Article  CAS  Google Scholar 

  4. Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

    Article  CAS  Google Scholar 

  5. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    Article  CAS  Google Scholar 

  6. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  7. Liu, W. P.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758–5764.

    Article  CAS  Google Scholar 

  8. Zhang, L. L.; Ren, Y. J.; Liu, W. G.; Wang, A. Q.; Zhang, T. Single-atom catalyst: A rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 2018, 5, 653–672.

    Article  CAS  Google Scholar 

  9. He, X. H.; He, Q.; Deng, Y. C.; Peng, M.; Chen, H. Y.; Zhang, Y.; Yao, S. Y.; Zhang, M. T.; **ao, D. Q.; Ma, D. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663.

    Article  Google Scholar 

  10. Boronat, M.; Concepción, P.; Corma, A.; González, S.; Illas, F.; Serna, P. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support. J. Am. Chem. Soc. 2007, 129, 16230–16237.

    Article  CAS  Google Scholar 

  11. Serna, P.; Boronat, M.; Corma, A. Tuning the behavior of Au and Pt catalysts for the chemoselective hydrogenation of nitroaromatic compounds. Top. Catal. 2011, 54, 439–446.

    Article  CAS  Google Scholar 

  12. Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Su, D. S.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.

    Article  Google Scholar 

  13. Ren, Y. J.; Wei, H. S.; Yin, G. Z.; Zhang, L. L.; Wang, A. Q.; Zhang, T. Oxygen surface groups of activated carbon steer the chemoselective hydrogenation of substituted nitroarenes over nickel nanoparticles. Chem. Commun. 2017, 53, 1969–1972.

    Article  CAS  Google Scholar 

  14. Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

    Article  CAS  Google Scholar 

  15. Zhang, L. L.; Wang, A. Q.; Wang, W. T.; Huang, Y. Q.; Liu, X. Y.; Miao, S.; Liu, J. Y.; Zhang, T. Co-N-C catalyst for C-C coupling reactions: On the catalytic performance and active sites. ACS Catal. 2015, 5, 6563–6572.

    Article  CAS  Google Scholar 

  16. Chen, F.; Surkus, A. E.; He, L.; Pohl, M. M.; Radnik, J.; Topf, C.; Junge, K.; Beller, M. Selective catalytic hydrogenation of heteroarenes with N-graphene-modified cobalt nanoparticles (Co3O4-Co/NGr@α-Al2O3). J. Am. Chem. Soc. 2015, 137, 11718–11724.

    Article  CAS  Google Scholar 

  17. Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

    Article  CAS  Google Scholar 

  18. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  CAS  Google Scholar 

  19. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

    Article  Google Scholar 

  20. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trap** of atoms. Nat. Catal. 2018, 1, 781–786.

    Article  CAS  Google Scholar 

  21. Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.

    Article  CAS  Google Scholar 

  22. Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

    Article  CAS  Google Scholar 

  23. He, L.; Weniger, F.; Neumann, H.; Beller, M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry. Angew. Chem., Int. Ed. 2016, 55, 12582–12594.

    Article  CAS  Google Scholar 

  24. **ong, Y.; Sun, W. M.; Han, Y. H.; **n, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-020-3244-4.

  25. Schwob, T.; Kempe, R. A reusable Co catalyst for the selective hydrogenation of functionalized nitroarenes and the direct synthesis of imines and benzimidazoles from nitroarenes and aldehydes. Angew. Chem., Int. Ed. 2016, 55, 15175–15179.

    Article  CAS  Google Scholar 

  26. Zhou, P.; Jiang, L.; Wang, F.; Deng, K. J.; Lv, K. L.; Zhang, Z. H. High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives. Sci. Adv. 2017, 3, e1601945.

    Article  Google Scholar 

  27. Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.

    Article  CAS  Google Scholar 

  28. Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

    Article  CAS  Google Scholar 

  29. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  30. Zafar, Z.; Ni, Z. H.; Wu, X.; Shi, Z. X.; Nan, H. Y.; Bai, J.; Sun, L. T. Evolution of Raman spectra in nitrogen doped graphene. Carbon 2013, 61, 57–62.

    Article  CAS  Google Scholar 

  31. Luo, W.; Wang, B.; Heron, C. G.; Allen, M. J.; Morre, J.; Maier, C. S.; Stickle, W. F.; Ji, X. L. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation. Nano Lett. 2014, 14, 2225–2229.

    Article  CAS  Google Scholar 

  32. Liu, J. W.; Webster, S.; Carroll, D. L. Temperature and flow rate of NH3 effects on nitrogen content and do** environments of carbon nanotubes grown by injection CVD method. J. Phys. Chem. B 2005, 109, 15769–15774.

    Article  CAS  Google Scholar 

  33. Liu, W. G.; Chen, Y. J.; Qi, H. F.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Liu, C. G. et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem., Int. Ed. 2018, 57, 7071–7075.

    Article  CAS  Google Scholar 

  34. Chen, W.; Yang, H. P.; Chen, Y. Q.; **a, M. W.; Chen, X.; Chen, H. P. Transformation of nitrogen and evolution of n-containing species during algae pyrolysis. Environ. Sci. Technol. 2017, 51, 6570–6579.

    Article  CAS  Google Scholar 

  35. Wei, L. H.; Wen, L. N.; Yang, T. H.; Zhang, N. Nitrogen transformation during sewage sludge pyrolysis. Energy Fuels 2015, 29, 5088–5094.

    Article  CAS  Google Scholar 

  36. Li, J.; Wang, Z. Y.; Yang, X.; Hu, L.; Liu, Y. W.; Wang, C. X. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG-FTIR. J. Anal. Appl. Pyrol. 2007, 80, 247–253.

    Article  CAS  Google Scholar 

  37. Chen, C. M.; Zhang, Q.; Zhao, X. C.; Zhang, B. S.; Kong, Q. Q.; Yang, M. G.; Yang, Q. H.; Wang, M. Z.; Yang, Y. G.; Schlögl, R. et al. Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. J. Mater. Chem. 2012, 22, 14076–14084.

    Article  CAS  Google Scholar 

  38. Khusnutdinova, J. R.; Milstein, D. Metal-ligand cooperation. Angew. Chem., Int. Ed. 2015, 54, 12236–12273.

    Article  CAS  Google Scholar 

  39. Colpas, G. J.; Maroney, M. J.; Bagyinka, C.; Kumar, M.; Willis, W. S.; Suib, S. L.; Mascharak, P. K.; Baidya, N. X-ray spectroscopic studies of nickel complexes, with application to the structure of nickel sites in hydrogenases. Inorg. Chem. 1991, 30, 920–928.

    Article  CAS  Google Scholar 

  40. Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779.

    Article  CAS  Google Scholar 

  41. Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

    Article  CAS  Google Scholar 

  42. Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; **ang, Z. H.; Cao, D. P. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 6626–6631.

    Article  CAS  Google Scholar 

  43. Yang, F.; Wang, M. J.; Liu, W.; Yang, B.; Wang, Y.; Luo, J.; Tang, Y. S.; Hou, L. Q.; Li, Y.; Li, Z. et al. Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes. Green Chem. 2019, 21, 704–711.

    Article  CAS  Google Scholar 

  44. Wang, Y. L.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, Q. H.; Gu, L.; Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062.

    Article  CAS  Google Scholar 

  45. Li, J. K.; Jiao, L.; Wegener, E.; Richard, L. L.; Liu, E. S.; Zitolo, A.; Sougrati, M. T.; Mukerjee, S.; Zhao, Z. P.; Huang, Y. et al. Evolution pathway from iron compounds to Fe1(II)-N4 sites through gas-phase iron during pyrolysis. J. Am. Chem. Soc. 2020, 142, 1417–1423.

    Article  CAS  Google Scholar 

  46. Shimizu, K. I.; Miyamoto, Y.; Satsuma, A. Size- and support-dependent silver cluster catalysis for chemoselective hydrogenation of nitroaromatics. J. Catal. 2010, 270, 86–94.

    Article  CAS  Google Scholar 

  47. Chen, B.; Dingerdissen, U.; Krauter, J. G. E.; Lansink Rotgerink, H. G. J.; Möbus, K.; Ostgard, D. J.; Panster, P.; Riermeier, T. H.; Seebald, S.; Tacke, T. et al. New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals. Appl. Catal. A Gen. 2005, 280, 17–46.

    Article  CAS  Google Scholar 

  48. Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.

    Article  CAS  Google Scholar 

  49. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  50. Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem. Int. Ed. 2020, 59, 1961–1965.

    Article  CAS  Google Scholar 

  51. Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; **ao, J. P.; Miao, S.; **e, S. H.; Yang, F. et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.

    Article  CAS  Google Scholar 

  52. Tomishige, K.; Nakagawa, Y.; Tamura, M. Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chem. 2017, 19, 2876–2924.

    Article  CAS  Google Scholar 

  53. Niu, J.; Rao, B. K.; Jena, P. Binding of hydrogen molecules by a transition-metal ion. Phys. Rev. Lett. 1992, 68, 2277–2280.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Technology R&D Program of China (No. 2020YFA0710202), the National Natural Science Foundation of China (Nos. U1662130, 21690080, 21690084, and 21721004), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020100). We also thank the BL 14W beamline at the Shanghai Synchrotron Radiation Facility (SSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leilei Zhang, Jianzhong Yin or Aiqin Wang.

Electronic Supplementary Material

12274_2021_3511_MOESM1_ESM.pdf

Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Zhang, L., Liu, X. et al. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 15, 519–527 (2022). https://doi.org/10.1007/s12274-021-3511-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3511-z

Keywords

Navigation