Log in

Superbroad-band actively tunable acoustic metamaterials driven from poly (ethylene terephthalate)/Carbon nanotube nanocomposite membranes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Actively tunable acoustic metamaterials have attracted ever increasing attention. However, their tunable frequency range is quite narrow (tens of Hz) even under ultrahigh applied voltage (about 1,000 V). Here, we report a superbroad-band actively tunable acoustic metamaterials with the bandwidth over 400 Hz under a low voltage. In the actively tunable acoustic metamaterials, the acoustic membrane is a laminated nanocomposite consisting of a poly (ethylene terephthalate) (PET) and super-aligned carbon nanotube (CNT) drawn from CNT forest array. The laminated nanocomposite membrane exhibits adjustable acoustic properties, whose modulus can be adjusted by applying external electric field. The maximum frequency bandwidth of PET/CNT nanocomposite membrane reaches 419 Hz when applying an external DC voltage of 60 V. Our actively tunable acoustic metamaterials with superbroad-band and lightweight show very promising foreground in noise reduction applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Z. Y.; Zhang, X. X.; Mao, Y. W.; Zhu, Y. Y.; Yang, Z. Y.; Chan, C. T.; Sheng, P. Locally resonant sonic materials.1 Science 2000, 289, 1734–1736.

    CAS  Google Scholar 

  2. Cummer, S. A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001.

    Google Scholar 

  3. Lee, S. H.; Wright, O. B. Origin of negative density and modulus in acoustic metamaterials. Phys. Rev. B. 2016, 93, 024302.

    Google Scholar 

  4. Ma, G. C.; Fan, X. Y.; Ma, F. Y.; de Rosny, J.; Sheng, P.; Fink, M. Towards anti-causal Green’s function for three-dimensional sub-diffraction focusing. Nat. Phys. 2018, 14, 608–612.

    CAS  Google Scholar 

  5. Mei, J.; Ma, G C.; Yang, M.; Yang, Z. Y.; Wen, W. J.; Sheng, P. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 2012, 3, 756.

    Google Scholar 

  6. Yang, M.; Ma, G. C.; Yang, Z. Y.; Sheng, P. Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 2013, 110, 134301.

    Google Scholar 

  7. Yang, Z. Y.; Mei, J.; Yang, M.; Chan, N. H.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 2008, 101, 204301.

    CAS  Google Scholar 

  8. Zhang, C.; Hu, X. H. Three-dimensional single-port labyrinthine acoustic metamaterial: Perfect absorption with large bandwidth and tunability. Phys. Rev. Appl. 2016, 6, 064025.

    Google Scholar 

  9. Lissek, H.; Boulandet, R.; Fleury, R. Electroacoustic absorbers: Bridging the gap between shunt loudspeakers and active sound absorption. J. Acoust. Soc. Am. 2011, 129, 2968–2978.

    Google Scholar 

  10. Bishop, K. J. M. Acoustic metamaterials: Living bandgaps. Nat. Mater. 2017, 16, 786–787.

    CAS  Google Scholar 

  11. Chen, S.; Fan, Y. C.; Fu, Q. H.; Wu, H. J.; **, Y. B.; Zheng, J. B.; Zhang, F. L. A review of tunable acoustic metamaterials. Appl. Sci. 2018, 8, 1480.

    Google Scholar 

  12. Popa, B. I.; Cummer, S. A. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun. 2014, 5, 3398.

    Google Scholar 

  13. Fleury, R.; Sounas, D. L.; Alù, A. Subwavelength ultrasonic circulator based on spatiotemporal modulation. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 174306.

    Google Scholar 

  14. Baz, A. The structure of an active acoustic metamaterial with tunable effective density. New J. Phys. 2009, 11, 123010.

    Google Scholar 

  15. Chen, X.; Xu, X. C.; Ai, S. G.; Chen, H. S.; Pei, Y. M.; Zhou, X. M. Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields. Appl. Phys. Lett. 2014, 105, 071913.

    Google Scholar 

  16. **ao, S. W.; Ma, G. C.; Li, Y.; Yang, Z. Y.; Sheng, P. Active control of membrane-type acoustic metamaterial by electric field. Appl. Phys. Lett. 2015, 106, 091904.

    Google Scholar 

  17. Chen, Z.; Xue, C.; Fan, L.; Zhang, S. Y.; Li, X. J.; Zhang, H.; Ding, J. A tunable acoustic metamaterial with double-negativity driven by electromagnets. Sci. Rep. 2016, 6, 30254.

    CAS  Google Scholar 

  18. Wang, P.; Casadei, F.; Shan, S. C.; Weaver, J. C.; Bertoldi, K. Harnessing buckling to design tunable locally resonant acoustic metamaterials. Phys. Rev. Lett. 2014, 113, 014301.

    Google Scholar 

  19. Yu, K. H.; Fang, N. X.; Huang, G. L.; Wang, Q. M. Magnetoactive acoustic metamaterials. Adv. Mater. 2018, 30, 1706348.

    Google Scholar 

  20. Li, Y.; Wang, S. S.; Peng, Q. Y.; Zhou, Z. W.; Yang, Z. Y.; He, X. D.; Li, Y. B. Active control of graphene-based membrane-type acoustic metamaterials using a low voltage. Nanoscale 2019, 11, 16384–16392.

    CAS  Google Scholar 

  21. Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

    CAS  Google Scholar 

  22. Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154–1161.

    CAS  Google Scholar 

  23. Yan, L. J.; Wang, K.; Luo, S.; Wu, H. C.; Luo, Y. F.; Yu, Y.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Sandwich-structured cathodes with cross-stacked carbon nanotube films as conductive layers for high-performance lithium-ion batteries. J. Mater. Chem. A 2017, 5, 4047–4057.

    CAS  Google Scholar 

  24. Wang, Y. Y.; Zhou, Z. H.; Zhou, C. G; Sun, W. J.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712.

    CAS  Google Scholar 

  25. Ning, W.; Wang, Z. H.; Liu, P.; Zhou, D. L.; Yang, S. Y.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Multifunctional super-aligned carbon nanotube/polyimide composite film heaters and actuators. Carbon 2018, 139, 1136–1143.

    CAS  Google Scholar 

  26. Zhao, J.; Shen, L. J.; Liu, F.; Zhao, P.; Huang, Q.; Han, H.; Peng, L. M.; Liang, X. L. Quality metrology of carbon nanotube thin films and its application for carbon nanotube-based electronics. Nano Res. 2020, 13, 1749–1755.

    CAS  Google Scholar 

  27. Joo, S.; Cho, I. J.; Seo, H.; Son, H. F.; Sagong, H. Y.; Shin, T. J.; Choi, S. Y.; Lee, S. Y.; Kim, K. J. Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation. Nat. Commun. 2018, 9, 382.

    Google Scholar 

  28. Burgess, S. K.; Leisen, J. E.; Kraftschik, B. E.; Mubarak, C. R.; Kriegel, R. M.; Koros, W. J. Chain mobility, thermal, and mechanical properties of poly (ethylene furanoate) compared to poly (ethylene terephthalate). Macromolecules 2014, 47, 1383–1391.

    CAS  Google Scholar 

  29. Heeley, E. L.; Hughes, D. J.; Crabb, E.; Kershaw, M.; Shebanova, O.; Leung, S.; Mayoral, B.; McNally, T. Structure evolution in poly (ethylene terephthalate) (PET)-Multi-walled carbon nanotube (MWCNT) composite films during in-situ uniaxial deformation. Polymer 2016, 92, 239–249.

    CAS  Google Scholar 

  30. Yuan, L.; Wang, Z. H.; Chen, S.; Gu, A. J.; Liang, G. Z.; Chen, G. Q. Reactive polymer-functionalized aligned multiwalled carbon nanotube bundles-induced porous poly (ethylene terephthalate) fibers. Ind. Eng. Chem. Res. 2019, 58, 10328–10340.

    CAS  Google Scholar 

  31. Li, Y.; Sun, L.; Xu, F.; Wang, S. S.; Peng, Q. Y.; Yang, Z. Y.; He, X. D.; Li, Y. B. Electromagnetic and acoustic double-shielding graphene-based metastructures. Nanoscale 2019, 11, 1692–1699.

    CAS  Google Scholar 

  32. Zhang, X. B.; Jiang, K. L.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

    CAS  Google Scholar 

  33. Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.

    CAS  Google Scholar 

  34. Zhu, K. L.; Luo, Y. F.; Zhao, F.; Hou, J. W.; Wang, X. W.; Ma, H.; Wu, H.; Zhang, Y. G.; Jiang, K. L.; Fan, S. S. et al. Free-standing, binder-free Titania/Super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 3426–3433.

    CAS  Google Scholar 

  35. Zhou, O.; Fleming, R. M.; Murphy, D. W.; Chen, C. H.; Haddon, R. C.; Ramirez, A. P.; Glarum, S. H. Defects in carbon nanostructures. Science 1994, 263, 1744–1747.

    CAS  Google Scholar 

  36. Ong, W. L.; Low, Q. X.; Huang, W.; van Kan, J. A.; Ho, G. W. Patterned growth of vertically-aligned ZnO nanorods on a flexible platform for feasible transparent and conformable electronics applications. J. Mater. Chem. 2012, 22, 8518–8524.

    CAS  Google Scholar 

  37. Cruz-Delgado, V. J.; Ávila-Orta, C. A.; Espinoza-Martínez, A. B.; Mata-Padilla, J. M.; Solis-Rosales, S. G.; Jalbout, A. F.; Medellín-Rodríguez, F. J.; Hsiao, B. S. Carbon nanotube surface-induced crystallization of polyethylene terephthalate (PET). Polymer 2014, 55, 642–650.

    CAS  Google Scholar 

  38. Liu, H.; Chen, J. Z.; Chen, L. M.; Xu, Y. S.; Guo, X. H.; Fang, D. Y. Carbon nanotube-based solid sulfonic acids as catalysts for production of fatty acid methyl ester via transesterification and esterification. ACS Sustainable Chem. Eng. 2016, 4, 3140–3150.

    CAS  Google Scholar 

  39. Huang, L.; Huang, Y.; Liang, J. J.; Wan, X. J.; Chen, Y. S. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4, 675–684.

    CAS  Google Scholar 

  40. Kumar, P.; Shahzad, F.; Yu, S. G.; Hong, S. M.; Kim, Y. H.; Koo, C. M. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 2015, 94, 494–500.

    CAS  Google Scholar 

  41. Camilli, L.; Pisani, C.; Gautron, E.; Scarselli, M.; Castrucci, P.; D’Orazio, F.; Passacantando, M.; Moscone, D.; De Crescenzi, M. A three-dimensional carbon nanotube network for water treatment. Nanotechnology 2014, 25, 065701.

    CAS  Google Scholar 

  42. Koizumi, R.; Hart, A. H. C.; Brunetto, G.; Bhowmick, S.; Owuor, P. S.; Hamel, J. T.; Gentles, A. X.; Ozden, S.; Lou, J.; Vajtai, R. et al. Mechano-chemical stabilization of three-dimensional carbon nanotube aggregates. Carbon 2016, 110, 27–33.

    CAS  Google Scholar 

  43. Lu, Y. X. Improvement of copper plating adhesion on silane modified PET film by ultrasonic-assisted electroless deposition. Appl. Surf. Sci. 2010, 256, 3554–3558.

    CAS  Google Scholar 

  44. Tarlani, A.; Narimani, K.; Mohammadipanah, F.; Hamedi, J.; Tahermansouri, H.; Amini, M. M. Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity. Appl. Surf. Sci. 2015, 341, 86–91.

    CAS  Google Scholar 

  45. Ao, W.; Ding, J.; Fan, L.; Zhang, S. Y. A robust actively-tunable perfect sound absorber. Appl. Phys. Lett. 2019, 115, 193506.

    Google Scholar 

  46. **ao, S. W.; Tang, S. T.; Yang, Z. Voltage-tunable acoustic metasheet with highly asymmetric surfaces. Appl. Phys. Lett. 2017, 111, 194101.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 52002201, 52008223 and 51772063), Open Fund of innovation institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology (Nu.2020-035), and Shenzhen Science and Technology Program (Grant No. KQTD2016112814303055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Liu, **aodong He or Yibin Li.

Electronic Supplementary Material

12274_2020_3048_MOESM1_ESM.pdf

Superbroad-band actively tunable acoustic metamaterials driven from poly (ethylene terephthalate)/Carbon nanotube nanocomposite membranes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ning, W., Peng, Q. et al. Superbroad-band actively tunable acoustic metamaterials driven from poly (ethylene terephthalate)/Carbon nanotube nanocomposite membranes. Nano Res. 14, 100–107 (2021). https://doi.org/10.1007/s12274-020-3048-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3048-6

Keywords

Navigation