Log in

Oxygen vacancy engineering of calcium cobaltate: A nitrogen fixation electrocatalyst at ambient condition in neutral electrolyte

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In order to sustainably transform N2 to ammonia (NRR) using electrocatalysts under mild ambient condition, it is urgent to design and develop non-nobel metal nanocatalysts that are inexpensive and suitable for mass-production. Herein, a calcium metalate catalyst CaCoOx with oxygen vacancies was synthesized and used as an electrocatalyst for NRR for the first time, whose morphology can be controlled by the calcination temperature and the heating rate. Under the optimal conditions, the CaCoOx catalyst achieved the yield of nitrogen conversion to ammonia of 16.25 µg·h−1·mgcat−1 at the potential of −0.3 V relative to the reversible hydrogen electrode (RHE) with a Faraday efficiency of 20.51%. The electrocatalyst showed good stability even after 12 times recyclability under environmental conditions and neutral electrolyte. Later, the electrocatalytic nitrogen reduction performance of CaFeOx, CaNiOx, CaCuOx was investigated. These earth-rich transition metals also exhibited certain NRR electrocatalytic capabilities, which provided a door for further development of inexpensive and easily available transition metal as nitrogen reduction electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosea, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

    Google Scholar 

  2. Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

    CAS  Google Scholar 

  3. Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.

    CAS  Google Scholar 

  4. Gruber, N.; Galloway, J. N. An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.

    CAS  Google Scholar 

  5. Halliday, J. E. B.; Hampson, K.; Hanley, N; Lembo, T.; Sharp, J. P.; Haydon, D. T.; Cleaveland, S. Driving improvements in emerging disease surveillance through locally relevant capacity strengthening. Science 2017, 357, 146–148.

    CAS  Google Scholar 

  6. Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; **e, F. Y.; Sun, X. P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386–14389.

    CAS  Google Scholar 

  7. Lazouski, N.; Chung, M.; Williams, K.; Gala, M. L.; Manthiram, K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 2020, 3, 463–469.

    CAS  Google Scholar 

  8. Wang, J.; Yu, L.; Hu, L.; Chen, G.; **n, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.

    Google Scholar 

  9. Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

    Google Scholar 

  10. Nguyen, M. T.; Seriani, N.; Gebauer, R. Nitrogen electrochemically reduced to ammonia with hematite: Density-functional insights. Phys. Chem. Chem. Phys. 2015, 17, 14317–14322.

    CAS  Google Scholar 

  11. Höskuldsson, Á. B.; Abghoui, Y.; Gunnarsdóttir, A. B.; Skúlason, E. Computational screening of rutile oxides for electrochemical ammonia formation. ACS Sustainable Chem. Eng. 2017, 5, 10327–10333.

    Google Scholar 

  12. Abghoui, Y.; Garden, A. L.; Howalt, J. G.; Vegge, T.; Skúlason, E. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments. ACS Catal. 2016, 6, 635–646.

    CAS  Google Scholar 

  13. Abghoui, Y.; Skúlason, E. Computational predictions of catalytic activity of zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis. J. Phys. Chem. C 2017, 121, 6141–6151.

    CAS  Google Scholar 

  14. Li, Q. Y.; He, L. Z.; Sun, C. H.; Zhang, X. W. Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction. J. Phys. Chem. C 2017, 121, 27563–27568.

    CAS  Google Scholar 

  15. Azofra, L. M.; Li, N.; MacFarlane, D. R.; Sun, C. H. Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ. Sci. 2016, 9, 2545–2549.

    CAS  Google Scholar 

  16. Wang, M. F.; Liu, S. S.; Qian, T.; Liu, J.; Zhou, J. Q.; Ji, H. Q.; **ong, J.; Zhong, J.; Yan, C. L. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.

    CAS  Google Scholar 

  17. Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

    CAS  Google Scholar 

  18. Cao, N.; Zheng, G. F. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992–3008.

    CAS  Google Scholar 

  19. Yuan, L. P.; Wu, Z. Y.; Jiang, W. J.; Tang, T.; Niu, S.; Hu, J. S. Phosphorus-do** activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376–1382.

    CAS  Google Scholar 

  20. Du, Y. Q.; Jiang, C.; Song, L.; Gao, B.; Gong, H.; **a, W.; Sheng, L.; Wang, T.; He, J. P. Regulating surface state of WO3 nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N2 fixation. Nano Res. 2020, 13, 2784–2790.

    CAS  Google Scholar 

  21. Yang, X. X.; Li, K.; Cheng, D. M.; Pang, W. L.; Lv, J. Q.; Chen, X. Y.; Zang, H. Y.; Wu, X. L.; Tan, H. Q.; Wang, Y. H. et al. Nitrogen-doped porous carbon: Highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction. J. Mater. Chem. A 2018, 6, 7762–7769.

    CAS  Google Scholar 

  22. Yan, D. F.; Li, H.; Chen, C.; Zou, Y. Q.; Wang, S. Y. Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods 2019, 3, 1800331.

    Google Scholar 

  23. Dou, S.; Li, X. Y.; Tao, L.; Huo, J.; Wang, S. Y. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. 2016, 52, 9727–9730.

    CAS  Google Scholar 

  24. Cheng, Y. W.; Dai, J. H.; Song, Y.; Zhang, Y. M. Nanostructure of Cr2CO2 MXene supported single metal atom as an efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Energy Mater. 2019, 2, 6851–6859.

    CAS  Google Scholar 

  25. Lv, X. S.; Wei, W.; Li, F. P.; Huang, B. B.; Dai, Y. Metal-free B@g-CN: Visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia. Nano Lett. 2019, 19, 6391–6399.

    CAS  Google Scholar 

  26. Xu, P.; Zhou, Z. M.; Zhao, C. J.; Cheng, Z. M. Catalytic performance of Ni/CaO-Ca5A16O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming. Catal. Today 2016, 259, 347–353.

    CAS  Google Scholar 

  27. Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

    CAS  Google Scholar 

  28. Ye, J. J.; Zhao, D. Y.; Hao, Q.; Xu, C. X. Facile fabrication of hierarchical manganese-cobalt mixed oxide microspheres as high-performance anode material for lithium storage. Electrochim. Acta 2016, 222, 1402–1409.

    CAS  Google Scholar 

  29. Wu, S. F.; Wang, L. L. Improvement of the stability of a ZrO2-modified Ni-nano-CaO sorption complex catalyst for ReSER hydrogen production. Int. J. Hydrogen Energy 2010, 35, 6518–6524.

    CAS  Google Scholar 

  30. Radfarnia, H. R.; Iliuta, M. C. Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent-catalyst. Chem. Eng. Process. 2014, 86, 96–103.

    CAS  Google Scholar 

  31. Li, W.; Ding, W.; Nie, Y.; Qi, X. Q.; Wu, G. P.; Li, L.; Liao, J. H.; Chen, S. G.; Wei, Z. D. Enhancing the stability and activity by anchoring Pt nanoparticles between the layers of etched montmorillonite for oxygen reduction reaction. Sci. Bull. 2016, 61, 1435–1439.

    CAS  Google Scholar 

  32. **a, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

    CAS  Google Scholar 

  33. Zhang, Y. Q.; Shi, Y. L.; Chen, R.; Tao, L.; **e, C.; Liu, D. D.; Yan, D. F.; Wang, S. Y. Enriched nucleation sites for Pt deposition on ultrathin WO3 nanosheets with unique interactions for methanol oxidation. J. Mater. Chem. A 2018, 6, 23028–23033.

    CAS  Google Scholar 

  34. Mukherjee, S.; Yang, X. X.; Shan, W. T.; Samarakoon, W.; Karakalos, S.; Cullen, D. A.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G. F. et al. Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods 2020, 4, 1900821.

    CAS  Google Scholar 

  35. **e, H. T.; Wang, H. B.; Geng, Q.; **ng, Z.; Wang, W.; Chen, J. Y.; Ji, L.; Chang, L.; Wang, Z. M.; Mao, J. Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorg. Chem. 2019, 58, 5423–5427.

    CAS  Google Scholar 

  36. Yang, L.; Wu, T. W.; Zhang, R.; Zhou, H.; **a, L.; Shi, X. F.; Zheng, H. G.; Zhang, Y. N.; Sun, X. P. Insights into defective TiO2 in electrocatalytic N2 reduction: Combining theoretical and experimental studies. Nanoscale 2019, 11, 1555–1562.

    CAS  Google Scholar 

  37. Fu, W. Z.; Zhuang, P. Y.; OliverLam Chee, M.; Dong, P.; Ye, M. X.; Shen, J. F. Oxygen vacancies in Ta2O5 nanorods for highly efficient electrocatalytic N2 reduction to NH3 under ambient conditions. ACS Sustainable Chem. Eng. 2019, 7, 9622–9628.

    CAS  Google Scholar 

  38. Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

    Google Scholar 

  39. Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; **, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

    CAS  Google Scholar 

  40. Yang, Y. J.; Wang, S. Q.; Wen, H. M.; Ye, T.; Chen, J.; Li, C. P.; Du, M. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 15362–15366.

    CAS  Google Scholar 

  41. Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

    Google Scholar 

  42. Chu, K.; Liu, Y. P.; Li, Y. B.; Wang, J.; Zhang, H. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 31806–31815.

    CAS  Google Scholar 

  43. Xu, X. S.; Sun, B. T.; Liang, Z. Q.; Cui, H. Z.; Jian, T. High-performance electrocatalytic conversion of N2 to NH3 using 1T-MoS2 anchored on Ti3C2 MXene under ambient conditions. ACS Appl. Mater. Interfaces 2020, 12, 26060–26067.

    CAS  Google Scholar 

  44. Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 58, 2612–2616.

    CAS  Google Scholar 

  45. Li, L. Q.; Tang, C.; **a, B. Q.; **, H. Y.; Zheng, Y.; Qiao, S. Z.; Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902–2908.

    CAS  Google Scholar 

  46. Song, P. F.; Kang, L.; Wang, H.; Guo, R.; Wang, R. M. Nitrogen (N), phosphorus (P)-codoped porous carbon as a metal-free electrocatalyst for N2 reduction under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 12408–12414.

    CAS  Google Scholar 

  47. Zhang, Y. F.; Zhang, J. X.; Lu, Q. M.; Zhang, Q. Y. Synthesis and characterization of Ca3Co4O9 nanoparticles by citrate sol-gel method. Mater. Lett. 2006, 60, 2443–2446.

    CAS  Google Scholar 

  48. Pei, J.; Chen, G.; Li, X.; Li, Y. X.; Zhou, N. Molten salt synthesis and thermoelectric properties of Ca2Co2O5. Mater. Lett. 2009, 63, 1459–1461.

    CAS  Google Scholar 

  49. Kang, M. G.; Cho, K. H.; Kim, J. S.; Nahm, S.; Yoon, S. J.; Kang, C. Y. Post-calcination, a novel method to synthesize cobalt oxide-based thermoelectric materials. Acta Mater. 2014, 73, 251–258.

    CAS  Google Scholar 

  50. Song, X. Y.; McIntyre, D.; Chen, X. Q.; Barbero, E. J.; Chen, Y. Phase evolution and thermoelectric performance of calcium cobaltite upon high temperature aging. Ceram. Int. 2015, 41, 11069–11074.

    CAS  Google Scholar 

  51. Kong, X.; Peng, H. Q.; Bu, S. Y.; Gao, Q. L.; Jiao, T. P.; Cheng, J. Y.; Liu, B.; Hong, G.; Lee, C. H.; Zhang, W. J. Defect engineering of nanostructured electrocatalysts for enhancing nitrogen reduction J. Mater. Chem. A 2020, 8, 7457–7473.

    CAS  Google Scholar 

  52. Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356–7361.

    CAS  Google Scholar 

  53. Zhang, L. L.; Cong, M. Y.; Ding, X.; **, Y.; Xu, F. F.; Wang, Y.; Chen, L.; Zhang, L. X. A Janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2020, 59, 10888–10893.

    CAS  Google Scholar 

  54. Qiao, C.; Rafai, S.; Cao, T.; Wang, Z. T.; Wang, H. Y.; Zhu, Y. Q.; Ma, X. L.; Xu, P. C.; Cao, C. B. Tuning surface electronic structure of two-dimensional cobalt-based hydroxide nanosheets for highly efficient water oxidation. ChemCatChem. 2020, 12, 2823–2832.

    CAS  Google Scholar 

  55. Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

    Google Scholar 

  56. Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; **e, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.

    CAS  Google Scholar 

  57. Lv, J. Q.; Yang, X. X.; Li, K. Chen, X. Y.; Sun, S.; Zang, H. Y.; Chang, Y. F.; Wang, Y. H.; Li, Y. G. Introduction of Mn(III) to regulate the electronic structure of fluorine-doped nickel hydroxide for efficient water oxidation. Nanoscale Adv. 2019, 1, 4099–4108.

    CAS  Google Scholar 

  58. Zhuang, L. Z.; Jia, Y.; He, T. W.; Du, A. J.; Yan, X. C.; Ge, L.; Zhu, Z. H.; Yao, X. D. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res. 2018, 11, 3509–3518.

    CAS  Google Scholar 

  59. Xu, L.; Jiang, Q. Q.; **ao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

    CAS  Google Scholar 

  60. Song, W. Q.; Ren, Z.; Chen, S. Y.; Meng, Y. T.; Biswas, S.; Nandi, P.; Elsen, H. A.; Gao, P. X.; Suib, S. L. Ni- and Mn-promoted mesoporous Co3O4: A stable bifunctional catalyst with surface-structure-dependent activity for oxygen reduction reaction and oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 20802–20813.

    CAS  Google Scholar 

  61. Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

    CAS  Google Scholar 

  62. Zhu, Y. L.; Zhou, W.; Yu, J.; Chen, Y. B.; Liu, M. L.; Shao, Z. P. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016, 28, 1691–1697.

    CAS  Google Scholar 

  63. Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699–2703.

    CAS  Google Scholar 

  64. Zhang, R.; Zhang, Y.; Ren, X.; Cui, G. W.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array. ACS Sustainable Chem. Eng. 2018, 6, 9545–9549.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21871042, 21471028 and 21671036), Changbai Mountain Scholarship, Natural Science Foundation of Jilin Province (No. 20200201083JC), and Natural Science Foundation of Department of education of Jilin Province (No. JJKH20201169KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Ying Zang.

Electronic supplementary material

12274_2020_3043_MOESM1_ESM.pdf

Oxygen vacancy engineering of calcium cobaltate: A nitrogen fixation electrocatalyst at ambient condition in neutral electrolyte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, K., Yang, X. et al. Oxygen vacancy engineering of calcium cobaltate: A nitrogen fixation electrocatalyst at ambient condition in neutral electrolyte. Nano Res. 14, 501–506 (2021). https://doi.org/10.1007/s12274-020-3043-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3043-y

Keywords

Navigation