Log in

Position-sensitive detectors based on two-dimensional materials

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials have attracted great attention in optoelectronics because of their unique structure, optical and electrical properties. Designing high-performance photodetectors and implementing their applications are eager to promote the development of 2D materials. Position-sensitive detector (PSD) is an optical inspection device for the precise measurements of position, distance, angle, and other relevant physical variables. It is a widely used component in the fields of tracking, aerospace, nanorobotics, and so forth. Essentially, PSD is also a photodetector based on the lateral photovoltaic effect (LPE). This article reviews recent progress in high-performance PSD based on 2D materials. The high-sensitive photodetectors and LPE involved in 2D photodetectors are firstly discussed. Then, we introduce the research progress of PSD based on 2D materials and analyze the carrier dynamics in different device structures. Finally, we summarize the functionalities and applications of PSD based on 2D materials, and highlight the challenges and opportunities in this research area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett.2012, 12, 4674–4680.

    CAS  Google Scholar 

  3. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.2012, 7, 699–712.

    CAS  Google Scholar 

  4. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett.2014, 14, 3347–3352.

    CAS  Google Scholar 

  5. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater.2007, 6, 183–191.

    CAS  Google Scholar 

  6. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics2016, 10, 216–226.

    CAS  Google Scholar 

  7. Tielrooij, K. J.; Piatkowski, L.; Massicotte, M.; Woessner, A.; Ma, Q.; Lee, Y.; Myhro, K. S.; Lau, C. N.; Jarillo-Herrero, P.; van Hulst, N. F. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol.2015, 10, 437–443.

    CAS  Google Scholar 

  8. **a, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol.2009, 4, 839–843.

    CAS  Google Scholar 

  9. Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol.2013, 8, 826–830.

    CAS  Google Scholar 

  10. Zhang, Y. Z.; Liu, T.; Meng, B.; Li, X. H.; Liang, G Z.; Hu, X. N.; Wang, Q. J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun.2013, 4, 1811.

    Google Scholar 

  11. Liu, C. H.; Chang, Y. C.; Norris, T. B.; Zhong, Z. H. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol.2014, 9, 273–278.

    CAS  Google Scholar 

  12. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol.2010, 5, 722–726.

    CAS  Google Scholar 

  13. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett.2008, 100, 016602.

    CAS  Google Scholar 

  14. Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater.2016, 28, 403–433.

    Google Scholar 

  15. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature2005, 438, 201–204.

    CAS  Google Scholar 

  16. Dawlaty, J. M.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M. G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett.2008, 92, 042116.

    Google Scholar 

  17. Grigorenko, A. N.; Polini, M.; Novoselov, K. S. Graphene plasmonics. Nat. Photonics2012, 6, 749–758.

    CAS  Google Scholar 

  18. Breusing, M.; Kuehn, S.; Winzer, T.; Malic, E.; Milde, F.; Severin, N.; Rabe, J. P.; Ropers, C.; Knorr, A.; Elsaesser, T. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B2011, 83, 153410.

    Google Scholar 

  19. George, P. A.; Strait, J.; Dawlaty, J.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M. G. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett.2008, 8, 4248–4251.

    CAS  Google Scholar 

  20. Geim, A. K. Graphene: Status and prospects. Science2009, 324, 1530–1534.

    CAS  Google Scholar 

  21. Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small2017, 13, 1700894.

    Google Scholar 

  22. Mueller, T.; **a, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics2010, 4, 297–301.

    CAS  Google Scholar 

  23. Gan, X. T.; Shiue, R.; Gao, Y. D.; Meric, I.; Heinz, T. F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics2013, 7, 883–887.

    CAS  Google Scholar 

  24. Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A. M.; Schrenk, W.; Strasser, G. et al. Microcavity-integrated graphene photodetector. Nano Lett.2012, 12, 2773–2777.

    CAS  Google Scholar 

  25. Konstantatos, G; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol.2012, 7, 363–368.

    CAS  Google Scholar 

  26. Freitag, M.; Low, T.; Zhu, W. J.; Yan, H. G.; **a, F. N.; Avouris, P. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun.2013, 4, 1951.

    Google Scholar 

  27. Fang, Z. Y.; Liu, Z.; Wang, Y. M.; Ajayan, P. M.; Nordlander, P.; Halas, N. J. Graphene-antenna sandwich photodetector. Nano Lett.2012, 12, 3808–3813.

    CAS  Google Scholar 

  28. Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol.2013, 8, 952–958.

    CAS  Google Scholar 

  29. Gao, A. Y.; Lai, J. W.; Wang, Y. J.; Zhu, Z.; Zeng, J. W.; Yu, G. L.; Wang, N. Z.; Chen, W. C.; Cao, T. J.; Hu, W. D. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol.2019, 14, 217–222.

    CAS  Google Scholar 

  30. An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett.2013, 13, 909–916.

    CAS  Google Scholar 

  31. Guo, X. T.; Wang, W. H.; Nan, H. Y.; Yu, Y. F.; Jiang, J.; Zhao, W. W.; Li, J. H.; Zafar, Z.; **ang, N.; Ni, Z. H. et al. High-performance graphene photodetector using interfacial gating. Optica2016, 3, 1066–1070.

    CAS  Google Scholar 

  32. Fang, J. Z.; Zhou, Z. Q.; **ao, M. Q.; Lou, Z.; Wei, Z. M.; Shen, G Z. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat2020, 2, 291–317.

    CAS  Google Scholar 

  33. Lucovsky, G. Photoeffects in nonuniformly irradiated p–n junctions. J. Appl. Phys.1960, 31, 1088–1095.

    Google Scholar 

  34. Levine, B. F.; Willens, R. H.; Bethea, C. G.; Brasen, D. Lateral photoeffect in thin amorphous superlattice films of Si and Ti grown on a Si substrate. Appl. Phys. Lett.1986, 49, 1537–1539.

    CAS  Google Scholar 

  35. Qiao, S.; Liu, Y. N.; Liu, J. H.; Chen, J. H.; Wang, S. F.; Fu, G. S. The reverse lateral photovoltaic effect in boron-diffused Si p–n junction structure. IEEE Electr. Device Lett.2016, 37, 201–204.

    CAS  Google Scholar 

  36. Martins, R.; Fortunato, E. Lateral photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si:H P-I-N devices. Rev. Sci. Instrum.1995, 66, 2927–2934.

    CAS  Google Scholar 

  37. Henry, J.; Livingstone, J. Optimizing the wavelength response in one-dimensional p-Si Schottky barrier optical PSDs. Phys. Status Solidi A2011, 208, 1718–1725.

    CAS  Google Scholar 

  38. Yu, C. Q.; Wang, H. Large lateral photovoltaic effect in metal-(oxide-)semiconductor structures. Sensors2010, 10, 10155–10180.

    CAS  Google Scholar 

  39. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater.2016, 1, 16042.

    CAS  Google Scholar 

  40. Wang, W. H.; Du, R. X.; Guo, X. T.; Jiang, J.; Zhao, W. W.; Ni, Z. H.; Wang, X. R.; You, Y. M.; Ni, Z. H. Interfacial amplification for graphene-based position-sensitive-detectors. Light: Sci. Appl.2017, 6, e17113.

    CAS  Google Scholar 

  41. Liu, K. Y.; Wang, W. H.; Yu, Y. F.; Hou, X. Y.; Liu, Y. P.; Chen, W.; Wang, X. M.; Lu, J. P.; Ni, Z. H. Graphene-based infrared position-sensitive detector for precise measurements and high-speed trajectory tracking. Nano Lett.2019, 19, 8132–8137.

    CAS  Google Scholar 

  42. Hao, L. Z.; Liu, Y. J.; Han, Z. D.; Xu, Z. J.; Zhu, J. Large lateral photovoltaic effect in MoS2/GaAs heterojunction. Nanoscale Res. Lett.2017, 12, 562.

    Google Scholar 

  43. Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater.2019, 29, 1803807.

    Google Scholar 

  44. Mas-Ballesté, R.; Gsmez-Navarro, C.; Gamez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale2011, 3, 20–30.

    Google Scholar 

  45. Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

    Google Scholar 

  46. Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater.2016, 26, 1938–1944.

    CAS  Google Scholar 

  47. Shim, J.; Oh, A.; Kang, D. H.; Oh, S.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Kim, M.; Choi, C.; Lee, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater.2016, 28, 6985–6992.

    CAS  Google Scholar 

  48. Jiang, J.; Ling, C. Y.; Xu, T.; Wang, W. H.; Niu, X. H.; Zafar, A.; Yan, Z. Z.; Wang, X. M.; You, Y. M.; Sun, L. T. et al. Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater.2018, 30, 1804332.

    Google Scholar 

  49. Wu, J.; Koon, G. K. W.; **ang, D.; Han, C.; Toh, C. T.; Kulkarni, E. S.; Verzhbitskiy, I.; Carvalho, A.; Rodin, A. S.; Koenig, S. P. et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano2015, 9, 8070–8077.

    CAS  Google Scholar 

  50. Liang, L. B.; Wang, J.; Lin, W. Z.; Sumpter, B. G.; Meunier, V.; Pan, M. H. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett.2014, 14, 6400–6406.

    CAS  Google Scholar 

  51. Liu, F. Z.; Kar, S. Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions. ACS Nano2014, 8, 10270–10279.

    CAS  Google Scholar 

  52. Li, X. M.; Zhu, M.; Du, M. D.; Lv, Z.; Zhang, L.; Li, Y. C.; Yang, Y.; Yang, T. T.; Li, X.; Wang, K. L. et al. High detectivity graphenesilicon heterojunction photodetector. Small2016, 12, 595–601.

    CAS  Google Scholar 

  53. Li, X. M.; Zhu, H. W.; Wang, K. L.; Cao, A. Y.; Wei, J. Q.; Li, C. Y.; Jia, Y.; Li, Z.; Li, X.; Wu, D. H. Graphene-on-silicon Schottky junction solar cells. Adv. Mater.2010, 22, 2743–2748.

    CAS  Google Scholar 

  54. Tsai, M. L.; Su, S. H.; Chang, J. K.; Tsai, D. S.; Chen, C. H.; Wu, C. I.; Li, L. J.; Chen, L. J.; He, J. H. Monolayer MoS2 heterojunction solar cells. ACS Nano2014, 8, 8317–8322.

    CAS  Google Scholar 

  55. Ye, Y.; Ye, Z. L.; Gharghi, M.; Zhu, H. Y.; Zhao, M.; Wang, Y.; Yin, X. B.; Zhang, X. Exciton-dominant electroluminescence from a diode of monolayer MoS2. Appl. Phys. Lett.2014, 104, 193508.

    Google Scholar 

  56. Zeng, L. H.; Wang, M. Z.; Hu, H.; Nie, B.; Yu, Y. Q.; Wu, C. Y.; Wang, L.; Hu, J. G.; **e, C.; Liang, F. X. et al. Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces2013, 5, 9362–9366.

    CAS  Google Scholar 

  57. Song, Y.; Li, X. M.; Mackin, C.; Zhang, X.; Fang, W. J.; Palacios, T.; Zhu, H. W.; Kong, J. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. Nano Lett.2015, 15, 2104–2110.

    CAS  Google Scholar 

  58. Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Pérez, R.; Burwell, Gi; Nikitskiy, I.; Lasanta, T.; Galán, T. et al. Broadband image sensor array based on graphenee-silicon photodr. Nat. Photonics2017, 11, 366–371.

    CAS  Google Scholar 

  59. Zhang, K.; Fang, X.; Wang, Y. L.; Wan, Y.; Song, Q. J.; Zhai, W. H.; Li, Y. P.; Ran, G. Z.; Ye, Y.; Dai, L. Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der waals heterostructure. ACS Appl. Mater. Interfaces2017, 9, 5392–5398.

    CAS  Google Scholar 

  60. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science2013, 340, 1311–1314.

    CAS  Google Scholar 

  61. Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol.2016, 11, 42–46.

    CAS  Google Scholar 

  62. Vu, Q. A.; Lee, J. H.; Nguyen, V. L.; Shin, Y. S.; Lim, S. C.; Lee, K.; Heo, J.; Park, S.; Kim, K.; Lee, Y. H. et al. Tuning carrier tunneling in van der waals heterostructures for ultrahigh detectivity. Nano Lett.2017, 17, 453–459.

    CAS  Google Scholar 

  63. Long, M. S.; Liu, E. F.; Wang, P.; Gao, A. Y.; **a, H.; Luo, W.; Wang, B. G.; Zeng, J. W.; Fu, Y. J.; Xu, K. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett.2016, 16, 2254–2259.

    CAS  Google Scholar 

  64. Li, A. L.; Chen, Q. X.; Wang, P. P.; Gan, Y.; Qi, T. L.; Wang, P.; Tang, F. D.; Wu, J. Z.; Chen, R.; Zhang, L. Y. et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/graphene/SnS2 p-g-n junctions. Adv. Mater.2018, 31, 1805656.

    Google Scholar 

  65. Huang, M. Q.; Wang, M. L.; Chen, C.; Ma, Z. W.; Li, X. F.; Han, J. B.; Wu, Y. Q. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater.2016, 28, 3481–3485.

    CAS  Google Scholar 

  66. Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano2014, 8, 8653–8661.

    CAS  Google Scholar 

  67. Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol.2014, 9, 676–681.

    CAS  Google Scholar 

  68. Lu, Q.; Yu, L.; Liu, Y.; Zhang, J. C.; Han, G. Q.; Hao, Y. Low-noise mid-infrared photodetection in BP/h-BN/graphene van der Waals heterojunctions. Materials2019, 12, 2532.

    CAS  Google Scholar 

  69. Yu, T.; Wang, F.; Xu, Y.; Ma, L. L.; Pi, X. D.; Yang, D. R. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors. Adv. Mater.2016, 28, 4912–4919.

    CAS  Google Scholar 

  70. Akatsuka, M.; Sueoka, K. Pinning effect of punched-out dislocations in carbon-, nitrogen- or boron-doped silicon wafers. Jpn. J. Appl. Phys.2001, 40, 1240–1241.

    CAS  Google Scholar 

  71. Huang, X.; Mei, C. L.; Gan, Z. K.; Zhou, P. Q.; Wang, H. Lateral photovoltaic effect in p-type silicon induced by surface states. Appl. Phys. Lett.2017, 110, 121103.

    Google Scholar 

  72. Sarker, B. K.; Cazalas, E.; Chung, T. F.; Childres, I.; Jovanovic, I.; Chen, Y. P. Position-dependent and millimetre-range photodetection in phototransistors with micrometre-scale graphene on SiC. Nat. Nanotechnol.2017, 12, 668–674.

    CAS  Google Scholar 

  73. Fortunato, E.; Lavareda, G.; Martins, R.; Soares, F.; Fernandes, L. Large-area 1D thin-film position-sensitive detector with high detection resolution. Sens. Actuators A: Phys.1996, 51, 135–142.

    Google Scholar 

  74. Henry, J.; Livingstone, J. Thin-film amorphous silicon position-sensitive detectors. Adv. Mater.2001, 13, 1023–1026.

    CAS  Google Scholar 

  75. Yan, Z.; Lin, J.; Peng, Z. W.; Sun, Z. Z.; Zhu, Y.; Li, L.; **ang, C. S.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano2012, 6, 9110–9117.

    CAS  Google Scholar 

  76. Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Castro Neto, A. H.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature2014, 505, 190–194.

    CAS  Google Scholar 

  77. Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull.2017, 62, 1074–1080.

    CAS  Google Scholar 

  78. Wang, W. H.; Yan, Z. Z.; Zhang, J. F.; Lu, J. P.; Qin, H.; Ni, Z. H. High-performance position-sensitive detector based on graphene-silicon heterojunction. Optica2018, 5, 27–31.

    CAS  Google Scholar 

  79. Wang, W. H.; Liu, K. Y.; Jiang, J.; Du, R. X.; Sun, L. T.; Chen, W.; Lu, J. P.; Ni, Z. H. Ultrasensitive graphene-Si position-sensitive detector for motion tracking. InfoMat2020, 2, 761–768.

    Google Scholar 

  80. Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano2013, 7, 3905–3911.

    CAS  Google Scholar 

  81. Eda, G.; Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano2013, 7, 5660–5665.

    CAS  Google Scholar 

  82. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett.2010, 105, 136805.

    Google Scholar 

  83. Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoS2 films with vertically aligned layers. Nano Lett.2013, 13, 1341–1347.

    CAS  Google Scholar 

  84. Cho, S. Y.; Kim, S. J.; Lee, Y.; Kim, J. S.; Jung, W. B.; Yoo, H. W.; Kim, J.; Jung, H. T. Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano2015, 9, 9314–9321.

    CAS  Google Scholar 

  85. Kang, M. A.; Kim, S. K.; Han, J. K.; Kim, S. J.; Chang, S. J.; Park, C. Y.; Myung, S.; Song, W.; Lee, S. S.; Lim, J. et al. Large scale growth of vertically standing MoS2 flakes on 2D nanosheet using organic promoter. 2D Mater.2017, 4, 025042.

    Google Scholar 

  86. Ho, Y. T.; Ma, C. H.; Luong, T. T.; Wei, L. L.; Yen, T. C.; Hsu, W. T.; Chang, W. H.; Chu, Y. C.; Tu, Y. Y.; Pande, K. P. et al. Layered MoS2 grown on c-sapphire by pulsed laser deposition. Phys. Status Solidi Rapid Res. Lett.2015, 9, 187–191.

    CAS  Google Scholar 

  87. Choudhary, N.; Park, J.; Hwang, J. Y.; Choi, W. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl. Mater. Interfaces2014, 6, 21215–21222.

    CAS  Google Scholar 

  88. Serna, M. I.; Yoo, S. H.; Moreno, S.; **, Y.; Oviedo, J. P.; Choi, H.; Alshareef, H. N.; Kim, M. J.; Minary-Jolandan, M.; Quevedo-Lopez, M. A. Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control. ACS Nano2016, 10, 6054–6061.

    CAS  Google Scholar 

  89. Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater.2015, 25, 2910–2919.

    CAS  Google Scholar 

  90. Cong, R. D.; Qiao, S.; Liu, J. H.; Mi, J. S.; Yu, W.; Liang, B. L.; Fu, G. S.; Pan, C. F.; Wang, S. F. Ultrahigh, ultrafast, and self-powered visible-near-infrared optical position-sensitive detector based on a CVD-prepared vertically standing few-layer MoS2/Si heterojunction. Adv. Sci. 2018, 5, 1700502.

    Google Scholar 

  91. Hao, L. Z.; Liu, Y. J.; Han, Z. D.; Xu, Z. J.; Zhu, J. Giant lateral photovoltaic effect in MoS2/SiO2/Si p-i-n junction. J. Alloys Compd.2018, 735, 88–97.

    CAS  Google Scholar 

  92. Qiao, S.; Liu, J. H.; Fu, G. S.; Wang, S. F.; Ren, K. L.; Pan, C. F. Laser-induced photoresistance effect in Si-based vertical standing MoS2 nanoplate heterojunctions for self-powered high performance broadband photodetection. J. Mater. Chem. C2019, 7, 10642–10651.

    CAS  Google Scholar 

  93. Zhao, X. F.; Zhang, L. R.; Gai, Q. Y.; Hu, C.; Wang, X. J. High-performance position-sensitive detector based on the lateral photovoltaic effect in MoS2/p-Si junctions. Appl. Opt.2019, 58, 5200–5205.

    CAS  Google Scholar 

  94. Hu, C.; Wang, X. J.; Miao, P.; Zhang, L. L.; Song, B. Q.; Liu, W. L.; Lv, Z.; Zhang, Y.; Sui, Y.; Tang, J. K. et al. Origin of the ultrafast response of the lateral photovoltaic effect in amorphous MoS2/Si junctions. ACS Appl. Mater. Interfaces2017, 9, 18362–18368.

    CAS  Google Scholar 

  95. Chang, H. X.; Sun, Z. H.; Yuan, Q. H.; Ding, F.; Tao, X. M.; Yan, F.; Zheng, Z. J. Thin film field-effect phototransistors from bandgaptunable, solution-processed, few-layer reduced graphene oxide films. Adv. Mater.2010, 22, 4872–4876.

    CAS  Google Scholar 

  96. Guo, L.; Shao, R. Q.; Zhang, Y. L.; Jiang, H. B.; Li, X. B.; **e, S. Y.; Xu, B. B.; Chen, Q. D.; Song, J. F.; Sun, H. B. Bandgap tailoring and synchronous microdevices patterning of graphene oxides. J. Phys. Chem. C2012, 116, 3594–3599.

    CAS  Google Scholar 

  97. Alsaedi, D.; Irannejad, M.; Ibrahim, K. H.; Almutairi, A.; Ramahi, O.; Yavuz, M. High-responsivity reduced graphene oxide gel photodetectors for visible-light detection with a large detection area and an end-contact interface. J. Mater. Chem. C2017, 5, 882–888.

    CAS  Google Scholar 

  98. Cao, Y.; Yang, H.; Zhao, Y. J.; Zhang, Y.; Ren, T. T.; **, B. B.; He, J. H.; Sun, J. L. Fully suspended reduced graphene oxide photodetector with annealing temperature-dependent broad spectral binary photoresponses. ACS Photonics2017, 4, 2797–2806.

    CAS  Google Scholar 

  99. Chitara, B.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N. R. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater.2011, 23, 5419–5424.

    CAS  Google Scholar 

  100. Li, G H.; Liu, L.; Wu, G.; Chen, W.; Qin, S. J.; Wang, Y.; Zhang, T. Self-powered UV-near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction. Small2016, 72, 5019–5026.

    Google Scholar 

  101. Ghosh, S.; Sarker, B. K.; Chunder, A.; Zhai, L.; Khondaker, S. I. Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett.2010, 96, 163109.

    Google Scholar 

  102. Feng, R.; Hu, L. G.; Zhang, Y. W.; Zaheer, M.; Qiu, Z. J.; Cong, C. X.; Nie, Q. M.; Qin, Y. J.; Liu, R. Direct laser writing of vertical junctions in graphene oxide films for broad spectral position-sensitive detectors. Nanophotonics2018, 7, 1563–1570.

    CAS  Google Scholar 

  103. Kumar, P. V.; Bernardi, M.; Grossman, J. C. The impact of functionalization on the stability, work function, and photoluminescence of reduced graphene oxide. ACS Nano2013, 7, 1638–1645.

    CAS  Google Scholar 

  104. Moon, I. K.; Ki, B.; Yoon, S.; Choi, J.; Oh, J. Lateral photovoltaic effect in flexible free-standing reduced graphene oxide film for self-powered position-sensitive detection. Sci. Rep.2016, 6, 33525.

    CAS  Google Scholar 

  105. Qiao, S.; Zhang, B.; Feng, K. Y.; Cong, R. D.; Yu, W.; Fu, G. S.; Wang, S. F. Large lateral photovoltage observed in MoS2 thickness-modulated ITO/MoS2/p-Si heterojunctions. ACS Appl. Mater. Interfaces2017, 9, 18377–18387.

    CAS  Google Scholar 

  106. Javadi, M.; Gholami, M.; Abdi, Y. IR position-sensitive detectors based on double-junction asymmetric TiO2/MoS2/reduced grapheneoxide sandwiches. J. Mater. Chem. C2018, 6, 8444–8452.

    CAS  Google Scholar 

  107. Wang, X. J.; Zhao, X. F.; Hu, C.; Zhang, Y.; Song, B. Q.; Zhang, L. L.; Liu, W. L.; Lv, Z.; Zhang, Y.; Tang, J. K. et al. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction. Appl. Phys. Lett.2016, 109, 023502.

    Google Scholar 

  108. Hao, L. Z.; Xu, H. Y.; Dong, S. C.; Du, Y. J.; Luo, L.; Zhang, C. Y.; Liu, H.; Wu, Y. P.; Liu, Y. J. SnSe/SiO2/Si heterostructures for ultrahigh-sensitivity and broadband optical position sensitive detectors. IEEE Electr. Device Lett.2019, 40, 55–58.

    CAS  Google Scholar 

  109. Zhang, Y.; Zhang, Y.; Yao, T.; Hu, C.; Sui, Y.; Wang, X. J. Ultrahigh position sensitivity and fast optical relaxation time of lateral photovoltaic effect in Sb2Se3/p-Si junctions. Opt. Express2018, 26, 34214–34223.

    CAS  Google Scholar 

  110. Ge, C.; **, K. J.; Lu, H. B.; Wang, C.; Zhao, G. M.; Zhang, L. L.; Yang, G. Z. Mechanisms for the enhancement of the lateral photovoltage in perovskite heterostructures. Solid State Commun.2010, 150, 2114–2117.

    CAS  Google Scholar 

  111. Ashar, A. Z.; Ganesh, N.; Narayan, K. S. Hybrid perovskite-based position-sensitive detectors. Adv. Electron. Mater.2018, 4, 1700362.

    Google Scholar 

  112. Javadi, M.; Gholami, M.; Torbatiyan, H.; Abdi, Y. Hybrid organic/inorganic position-sensitive detectors based on PEDOT:PSS/n-Si. Appl. Phys. Lett.2018, 112, 113302.

    Google Scholar 

  113. Lin, J. Y.; Liao, Y. C. Small-angle measurement with highly sensitive total-internal-reflection heterodyne interferometer. Appl. Opt.2014, 53, 1903–1908.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 61927808, 61774034, and 11704068), the National Key Research and Development Program of China (No. 2017YFA0205700), China Postdoctoral Science Foundation (No. 2018M632197).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junpeng Lu or Zhenhua Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Lu, J. & Ni, Z. Position-sensitive detectors based on two-dimensional materials. Nano Res. 14, 1889–1900 (2021). https://doi.org/10.1007/s12274-020-2917-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2917-3

Keywords

Navigation