Log in

Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) battery as one of the most attractive candidates for energy storage systems has attracted extensive interests. Herein, for the first time, hierarchical flower-like cobalt phosphosulfide architectures (defined as “CoSP”) derived from Prussian blue analogue (PBA) was fabricated through the conversion of Co-based PBA in PxSy atmosphere. The as-prepared polar CoSP could effectively trap polysulfides through the formation of strong chemical bonds. In addition, after the combination of CoSP with high conductive rGO, the obtained CoSP/rGO as sulfur host material exhibits ultralow capacity decay rate of 0.046% per cycle over 900 cycles at a current density of 1 C. The excellent performance could be attributed to the shortened lithium diffusion pathways, fastened electron transport ability during polysulfide conversion, and increased much more anchor active sites to polysulfides, which is expected to be a promising material for Li-S batteries. It is believed that the as-prepared CoSP/rGO architectures will shed light on the development of novel promising materials for Li-S batteries with high cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  Google Scholar 

  2. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Article  Google Scholar 

  3. Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

    Article  Google Scholar 

  4. Li, Z.; Guan, B. Y.; Zhang, J. T.; Lou, X. W. A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule 2017, 1, 576–587.

    Article  Google Scholar 

  5. Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

    Article  Google Scholar 

  6. Chen, K. N.; Cao, J.; Lu, Q. Q.; Wang, Q. R.; Yao, M. J.; Han, M. M.; Niu, Z. Q.; Chen, J. Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries. Nano Res. 2018, 11, 1345–1357.

    Article  Google Scholar 

  7. Zhang, J.; Li, J. Y.; Wang, W. P.; Zhang, X. H.; Tan, X. H.; Chu, W. G.; Guo, Y. G. Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li-S batteries. Adv. Energy Mater. 2018, 8, 1702839.

    Article  Google Scholar 

  8. Kim, J. H.; Fu, K.; Choi, J.; Sun, S.; Kim, J.; Hu, L. B.; Paik, U. Hydroxylated carbon nanotube enhanced sulfur cathodes for improved electrochemical performance of lithium-sulfur batteries. Chem. Commun. 2015, 51, 13682–13685.

    Article  Google Scholar 

  9. Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 12990–12995.

    Article  Google Scholar 

  10. Shang, C. Q.; Cao, L. J.; Yang, M. Y.; Wang, Z. Y.; Li, M. C.; Zhou, G. F.; Wang, X.; Lu, Z. G. Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries. Energy Storage Mater. 2018, doi: https://doi.org/10.1016/j.ensm.2018.08.013.

    Google Scholar 

  11. Pu, J.; Shen, Z. H.; Zheng, J. X.; Wu, W. L.; Zhu, C.; Zhou, Q. W.; Zhang, H. G.; Pan, F. Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 2017, 37, 7–14.

    Article  Google Scholar 

  12. Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.

    Article  Google Scholar 

  13. Wu, W. L.; Pu, J.; Wang, J.; Shen, Z. H.; Tang, H. Y.; Deng, Z. T.; Tao, X. Y.; Pan, F.; Zhang, H. G. Biomimetic bipolar microcapsules derived from Staphylococcus aureus for enhanced properties of lithium-sulfur battery cathodes. Adv. Energy Mater. 2018, 8, 1702373.

    Article  Google Scholar 

  14. Chung, S. H.; Luo, L.; Manthiram, A. TiS2-polysulfide hybrid cathode with high sulfur loading and low electrolyte consumption for lithium-sulfur batteries. ACS Energy Lett. 2018, 3, 568–573.

    Article  Google Scholar 

  15. Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trap**-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

    Article  Google Scholar 

  16. Zhu, L.; Li, C. C.; Ren, W. J.; Qin, M. Y.; Xu, L. Q. Multifunctional vanadium nitride@N-doped carbon composites for kinetically enhanced lithium-sulfur batteries. New J. Chem. 2018, 42, 5109–5116.

    Article  Google Scholar 

  17. Deng, D. R.; Xue, F.; Jia, Y. J.; Ye, J. C.; Bai, C. D.; Zheng, M. S.; Dong, Q. F. C_4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano 2017, 11, 6031–6039.

    Article  Google Scholar 

  18. Ren, W. J.; Xu, L. Q.; Zhu, L.; Wang, X. Y.; Ma, X. J.; Wang, D. B. Cobalt-doped vanadium nitride yolk-shell nanospheres @ carbon with physical and chemical synergistic effects for advanced Li-S batteries. ACS Appl. Mater. Interfaces 2018, 10, 11642–11651.

    Article  Google Scholar 

  19. Li, C. C.; Liu, X. B.; Zhu, L.; Huang, R. Z.; Zhao, M. W.; Xu, L. Q.; Qian, Y. T. Conductive and polar titanium boride as a sulfur host for advanced lithium-sulfur batteries. Chem. Mater. 2018, 30, 6969–6977.

    Article  Google Scholar 

  20. Yuan, H. D.; Chen, X. L.; Zhou, G. M.; Zhang, W. K.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; **a, Y.; Zhang, J. et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium-sulfur batteries. ACS Energy Lett. 2017, 2, 1711–1719.

    Article  Google Scholar 

  21. Pang, Q.; Kundu, D.; Nazar, L. F. A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Mater. Horiz. 2016, 3, 130–136.

    Article  Google Scholar 

  22. Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459.

    Article  Google Scholar 

  23. Chen, X. X.; Ding, X. Y.; Wang, C. S.; Feng, Z. Y.; Xu, L. Q.; Gao, X.; Zhai, Y. J.; Wang, D. B. A multi-shelled CoP nanosphere modified separator for highly efficient Li-S batteries. Nanoscale 2018, 10, 13694–13701.

    Article  Google Scholar 

  24. Zhou, G. M.; Sun, J.; **, Y.; Chen, W.; Zu, C. X.; Zhang, R. F.; Qiu, Y. C.; Zhao, J.; Zhuo, D.; Liu, Y. Y. et al. Sulfiphilic nickel phosphosulfide enabled Li2S impregnation in 3D graphene cages for Li-S batteries. Adv. Mater. 2017, 29, 1603366.

    Article  Google Scholar 

  25. Dai, Z. F.; Geng, H. B.; Wang, J.; Luo, Y. B.; Li, B.; Zong, Y.; Yang, J.; Guo, Y. Y.; Zheng, Y.; Wang, X. et al. Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 2017, 11, 11031–11040.

    Article  Google Scholar 

  26. Liu, S. H.; Li, J.; Yan, X.; Su Q. F.; Lu Y. H.; Qiu J. S.; Wang Z. Y.; Lin X. D.; Huang J. L.; Liu R. L. et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries. Adv. Mater. 2018, 30, 1706895.

    Article  Google Scholar 

  27. Li, Q.; Chen, Y. J.; Yang, T.; Lei, D. N.; Zhang, G. H.; Mei, L.; Chen, L. B.; Li, Q. H.; Wang, T. H. Preparation of 3D flower-like NiO hierarchical architectures and their electrochemical properties in lithium-ion batteries. Electrochim. Acta 2013, 90, 80–89.

    Article  Google Scholar 

  28. Guo, Z. Q.; Nie, H. G.; Yang, Z.; Hua, W. X.; Ruan, C. P.; Chan, D.; Ge, M. Z.; Chen, X. A.; Huang, S. M. 3D CNTs/graphene-S-Al3Ni2 cathodes for high-sulfur-loading and long-life lithium-sulfur batteries. Adv. Sci. 2018, 5, 1800026.

    Article  Google Scholar 

  29. Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; **, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251.

    Article  Google Scholar 

  30. Mu, Y. L.; Wang, L.; Zhao, Y.; Liu, M. J.; Zhang, W.; Wu, J. T.; Lai, X.; Fan, G. Y.; Bi, J.; Gao, D. J. 3D flower-like MnCO3 microcrystals: Evolution mechanisms of morphology and enhanced electrochemical performances. Electrochim. Acta 2017, 251, 119–128.

    Article  Google Scholar 

  31. Sivanantham, A.; Ganesan, P.; Estevez, L.; McGrail, B. P.; Motkuri, R. K.; Shanmugam, S. A stable graphitic, nanocarbon-encapsulated, cobalt-rich core-shell electrocatalyst as an oxygen electrode in a water electrolyzer. Adv. Energy Mater. 2018, 8, 1702838.

    Article  Google Scholar 

  32. Huang, Z. P.; Chen, Z. Z.; Chen, Z. B.; Lv, C. C.; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy, 2014, 9, 373.

    Article  Google Scholar 

  33. Zeng, P.; Huang, L. W.; Zhang, X. L.; Han, Y. M.; Chen, Y. G. Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: Mechanism research and performance improvement. Appl. Surf. Sci. 2018, 427, 242–252.

    Article  Google Scholar 

  34. Sun, J.; Sun, Y. M.; Pasta, M.; Zhou, G. M.; Li, Y. Z.; Liu, W.; **ong, F.; Cui, Y. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Adv. Mater. 2016, 28, 9797–9803.

    Article  Google Scholar 

  35. Kong, L.; Chen, X.; Li, B. Q.; Peng, H. J.; Huang, J. Q.; **e, J.; Zhang, Q. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705219.

    Article  Google Scholar 

  36. Rehman, S.; Guo, S. J.; Hou, Y. L. Rational design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery. Adv. Mater. 2016, 28, 3167–3172.

    Article  Google Scholar 

  37. Zubair, U.; Amici, J.; Francia, C.; McNulty, D.; Bodoardo, S.; O’Dwyer, C. Polysulfide binding to several nanoscale magneli phases synthesized in carbon for long-life lithium-sulfur battery cathodes. ChemSusChem 2018, 11, 1838–1848.

    Article  Google Scholar 

  38. Cai, W. L.; Li, G. R.; Zhang, K. L.; **ao, G. N.; Wang, C.; Ye, K. F.; Chen, Z. W.; Zhu, Y. C.; Qian, Y. T. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704865.

    Article  Google Scholar 

  39. Li, C. C.; Shi, J. J.; Zhu, L.; Zhao, Y. Y.; Lu, J.; Xu, L. Q. Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Res. 2018, 11, 4302–4312.

    Article  Google Scholar 

  40. Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene-carbon nanotube hybrids from Prussian blue for lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.

    Article  Google Scholar 

  41. Wang, M. X.; Fan, L. S.; Qiu, Y.; Chen, D. D.; Wu, X.; Zhao, C. Y.; Cheng, J. H.; Wang, Y.; Zhang, N. Q.; Sun, K. N. Electrochemically active separators with excellent catalytic ability toward high-performance Li-S batteries. J. Mater. Chem. A 2018, 6, 11694–11699.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Academy of Sciences large apparatus United Fund of China (No. U182345), National Natural Science Foundation of China (No. 21471091), Guangdong Province Science and Technology Plan Project for Public Welfare Fund and Ability Construction Project (No. 2017A010104003), Shenzhen Science and Technology Research and Development Funds (No. JCYJ20170818104441521), the Fundamental Research Funds of Shandong University (No. 2018JC022) and the Taishan Scholar Project of Shandong Province (No. ts201511004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Xu.

Electronic supplementary material

12274_2019_2358_MOESM1_ESM.pdf

Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Ding, X., Muheiyati, H. et al. Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Res. 12, 1115–1120 (2019). https://doi.org/10.1007/s12274-019-2358-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2358-z

Keywords

Navigation