Log in

Facile ultrafine copper seed-mediated approach for fabricating quasi-two-dimensional palladium-copper bimetallic trigonal hierarchical nanoframes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Anisotropic Pd nanoparticles with highly branched morphologies are urgently needed as building blocks for nanoscale devices, catalysts, and sensing materials owing to their novel structures and unique physicochemical properties. However, realizing size control and branch manipulation for these materials is very challenging. In this study, we develop a facile ultrafine Cu seed-mediated approach in the aqueous phase to produce novel Pd–Cu trigonal hierarchical nanoframes (THNFs). The main branch of most of the obtained nanocrystals is tripod-like, with advanced branches along the arms as frame units having self-similarity. In this method, the size of the Pd–Cu THNFs can be flexibly controlled by manipulating the nucleation involving the sub-3 nm Cu seeds. These Pd–Cu THNFs outperform Pd black with regard to their ethanol-oxidation performance, having a specific activity and mass activity 9.7 and 6.6 times higher, respectively. This research provides a versatile ultrafine seed-mediated approach for producing size-controlled anisotropic bimetallic nanoframes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.; Uenishi, M.; Kimura, M.; Okamoto, T.; Hamada, N. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 2002, 418, 164–167.

    Article  Google Scholar 

  2. Blaser, H. U.; Indolese, A.; Schnyder, A.; Steiner, H.; Studer, M. Supported palladium catalysts for fine chemicals synthesis. J. Mol. Catal. A: Chem. 2001, 173, 3–18.

    Article  Google Scholar 

  3. Fang, P. P.; Jutand, A.; Tian, Z. Q.; Amatore, C. Au-Pd core–shell nanoparticles catalyze Suzuki–Miyaura reactions in water through Pd leaching. Angew. Chem., Int. Ed. 2011, 50, 12184–12188.

    Article  Google Scholar 

  4. Reimann, S.; Stötzel, J.; Frahm, R.; Kleist, W.; Grunwaldt, J. D.; Baiker, A. Identification of the active species generated from supported Pd catalysts in heck reactions: An in situ quick scanning EXAFS investigation. J. Am. Chem. Soc. 2011, 133, 3921–3930.

    Article  Google Scholar 

  5. Calò, V.; Nacci, A.; Monopoli, A.; Montingelli, F. Pd nanoparticles as efficient catalysts for Suzuki and Stille coupling reactions of aryl halides in ionic liquids. J. Org. Chem. 2005, 70, 6040–6044.

    Article  Google Scholar 

  6. Xu, C. W.; Wang, H.; Shen, P. K.; Jiang, S. P. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv. Mater. 2007, 19, 4256–4259.

    Article  Google Scholar 

  7. Guo, C. X.; Zhang, L. Y.; Miao, J. W.; Zhang, J. T.; Li, C. M. DNA-functionalized graphene to guide growth of highly active Pd nanocrystals as efficient electrocatalyst for direct formic acid fuel cells. Adv. Energy Mater. 2013, 3, 167–171.

    Article  Google Scholar 

  8. Chen, L. Y.; Chen, N.; Hou, Y.; Wang, Z. C.; Lv, S. H.; Fujita, T.; Jiang, J. H.; Hirata, A.; Chen, M. W. Geometrically controlled nanoporous PdAu bimetallic catalysts with tunable Pd/Au ratio for direct ethanol fuel cells. ACS Catal. 2013, 3, 1220–1230.

    Article  Google Scholar 

  9. Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

    Article  Google Scholar 

  10. Shao, M. H.; Sasaki, K.; Adzic, R. R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2006, 128, 3526–3527.

    Article  Google Scholar 

  11. Kariuki, N. N.; Wang, X. P.; Mawdsley, J. R.; Ferrandon, M. S.; Niyogi, S. G.; Vaughey, J. T.; Myers, D. J. Colloidal synthesis and characterization of carbon-supported Pd-Cu nanoparticle oxygen reduction electrocatalysts. Chem. Mater. 2010, 22, 4144–4152.

    Article  Google Scholar 

  12. Mazumder, V.; Chi, M. F.; Mankin, M. N.; Liu, Y.; Metin, Ö.; Sun, D. H.; More, K. L.; Sun, S. H. A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation. Nano Lett. 2012, 12, 1102–1106.

    Article  Google Scholar 

  13. Chang, J. F.; Feng, L. G.; Liu, C. P.; **ng, W.; Hu, X. L. An effective Pd–Ni2P/C anode catalyst for direct formic acid fuel cells. Angew. Chem., Int. Ed. 2014, 53, 122–126.

    Article  Google Scholar 

  14. **, M. S.; Zhang, H.; **e, Z. X.; **a, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357.

    Article  Google Scholar 

  15. Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.

    Article  Google Scholar 

  16. Zhang, H.; **, M. S.; **a, Y. N. Noble-metal nanocrystals with concave surfaces: Synthesis and applications. Angew. Chem., Int. Ed. 2012, 51, 7656–7673.

    Article  Google Scholar 

  17. Wang, Z. D.; Bharathi, M. S.; Hariharaputran, R.; **ng, H.; Tang, L. H.; Li, J. H.; Zhang, Y. W.; Lu, Y. PH-dependent evolution of five-star gold nanostructures: An experimental and computational study. ACS Nano 2013, 7, 2258–2265.

    Article  Google Scholar 

  18. Chen, S.; Su, H. Y.; Wang, Y. C.; Wu, W. L.; Zeng, J. Size-controlled synthesis of platinum–copper hierarchical trigonal bipyramid nanoframes. Angew. Chem. 2015, 127, 110–115.

    Article  Google Scholar 

  19. Lin, T. H.; Lin, C. W.; Liu, H. H.; Sheu, J. T.; Hung, W. H. Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. Chem. Commun. 2011, 47, 2044–2046.

    Article  Google Scholar 

  20. Chen, X.; Cui, C. H.; Guo, Z.; Liu, J. H.; Huang, X. J.; Yu, S. H. Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties. Small 2011, 7, 858–863.

    Article  Google Scholar 

  21. Zhou, P.; Dai, Z. H.; Fang, M.; Huang, X. H.; Bao, J. C.; Gong, J. F. Novel dendritic palladium nanostructure and its application in biosensing. J. Phys. Chem. C 2007, 111, 12609–12616.

    Article  Google Scholar 

  22. Watt, J.; Cheong, S.; Toney, M. F.; Ingham, B.; Cookson, J.; Bishop, P. T.; Tilley, R. D. Ultrafast growth of highly branched palladium nanostructures for catalysis. ACS Nano 2010, 4, 396–402.

    Article  Google Scholar 

  23. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S.-I.; Park, J.; Herron, J. A.; **e, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

    Article  Google Scholar 

  24. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; **n, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  25. Long, R.; Rao, Z. L.; Mao, K. K.; Li, Y.; Zhang, C.; Liu, Q. L.; Wang, C. M.; Li, Z. Y.; Wu, X. J.; **ong, Y. J. Efficient coupling of solar energy to catalytic hydrogenation by using well-designed palladium nanostructures. Angew. Chem., Int. Ed. 2015, 54, 2425–2430.

    Article  Google Scholar 

  26. **e, W.; Schlücker, S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 2015, 6, 7570.

    Article  Google Scholar 

  27. Niu, W. X.; Zhang, W. Q.; Firdoz, S.; Lu, X. M. Controlled synthesis of palladium concave nanocubes with sub-10-nanometer edges and corners for tunable plasmonic property. Chem. Mater. 2014, 26, 2180–2186.

    Article  Google Scholar 

  28. Jiang, Y. Q.; Su, J. Y.; Yang, Y.; Jia, Y. Y.; Chen, Q. L.; **e, Z. X.; Zheng, L. S. A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties. Nano Res. 2016, 9, 849–856.

    Article  Google Scholar 

  29. Ding, L.-X.; Wang, A.-L.; Ou, Y.-N.; Li, Q.; Guo, R.; Zhao, W.-X.; Tong, Y.-X.; Li, G.-R. Hierarchical Pd-Sn alloy nanosheet dendrites: An economical and highly active catalyst for ethanol electrooxidation. Sci. Rep. 2013, 3, 1181.

    Article  Google Scholar 

  30. Saleem, F.; Xu, B.; Ni, B.; Liu, H. L.; Nosheen, F.; Li, H. Y.; Wang, X. Atomically thick Pt-Cu nanosheets: Self-assembled sandwich and nanoring-like structures. Adv. Mater. 2015, 27, 2013–2018.

    Article  Google Scholar 

  31. **a, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew. Chem., Int. Ed. 2012, 51, 7213–7216.

    Article  Google Scholar 

  32. Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.

    Article  Google Scholar 

  33. Li, H.-H.; Cui, C.-H.; Zhao, S.; Yao, H.-B.; Gao, M.-R.; Fan, F.-J.; Yu, S.-H. Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts. Adv. Energy Mater. 2012, 2, 1182–1187.

    Article  Google Scholar 

  34. Gimeno, Y.; Creus, A. H.; González, S.; Salvarezza, R. C.; Arvia, A. J. Preparation of 100-160-nm-sized branched palladium islands with enhanced electrocatalytic properties on HOPG. Chem. Mater. 2001, 13, 1857–1864.

    Article  Google Scholar 

  35. **ao, J. P.; **e, Y.; Tang, R.; Chen, M.; Tian, X. B. Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Adv. Mater. 2001, 13, 1887–1891.

    Article  Google Scholar 

  36. Zhu, X. H.; Li, A. D.; Wu, D.; Zhu, T.; Liu, Z. G.; Ming, N. B. High-resolution electron microscopy investigations on stacking faults in SrBi2Ta2O9 ferroelectric thin films. Appl. Phys. Lett. 2001, 78, 973–975.

    Article  Google Scholar 

  37. Feldberg, S.; Klotz, P.; Newman, L. Computer evaluation of equilibrium constants from spectrophotometric data. Inorg. Chem. 1972, 11, 2860–2865.

    Article  Google Scholar 

  38. Zhang, L.; Choi, S.-I.; Tao, J.; Peng, H.-C.; **e, S. F.; Zhu, Y. M.; **e, Z. X.; **a, Y. N. Pd–Cu bimetallic tripods: A mechanistic understanding of the synthesis and their enhanced electrocatalytic activity for formic acid oxidation. Adv. Funct. Mater. 2014, 24, 7520–7529.

    Article  Google Scholar 

  39. Branicio, P. S.; Zhang, J. Y.; Srolovitz, D. J. Effect of strain on the stacking fault energy of copper: A first-principles study. Phys. Rev. B 2013, 88, 064104.

    Article  Google Scholar 

  40. Wang, Y. W.; He, J. T.; Liu, C. C.; Chong, W. H.; Chen, H. Y. Thermodynamics versus kinetics in nanosynthesis. Angew. Chem., Int. Ed. 2015, 54, 2022–2051.

    Article  Google Scholar 

  41. Maksimuk, S.; Teng, X. W.; Yang, H. Planar tripods of platinum: Formation and self-assembly. Phys. Chem. Chem. Phys. 2006, 8, 4660–4663.

    Article  Google Scholar 

  42. Maksimuk, S.; Teng, X. W.; Yang, H. Roles of twin defects in the formation of platinum multipod nanocrystals. J. Phys. Chem. C 2007, 111, 14312–14319.

    Article  Google Scholar 

  43. Kashchiev, D. Nucleation: Basic Theory with Applications; Butterworth Heinemann: Oxford,2000.

    Google Scholar 

  44. Wang, T.; LaMontagne, D.; Lynch, J.; Zhuang, J. Q.; Cao, Y. C. Colloidal superparticles from nanoparticle assembly. Chem. Soc. Rev. 2013, 42, 2804–2823.

    Article  Google Scholar 

  45. Wang, Y.; Peng, H. C.; Liu, J. Y.; Huang, C. Z.; **a, Y. N. Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals. Nano Lett. 2015, 15, 1445–1450.

    Article  Google Scholar 

  46. **a, Y. N.; **a, X. H.; Peng, H.-C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.

    Article  Google Scholar 

  47. Lai, S. C. S.; Kleijn, S. E. F.; Öztürk, F. T. Z.; van Rees Vellinga, V. C.; Koning, J.; Rodriguez, P.; Koper, M. T. M. Effects of electrolyte Ph and composition on the ethanol electro-oxidation reaction. Catal. Today 2010, 154, 92–104.

    Article  Google Scholar 

  48. Mårtensson, N.; Nyholm, R.; Calén, H.; Hedman, J.; Johansson, B. Electron-spectroscopic studies of the Cu x Pd1-x alloy system: Chemical-shift effects and valence-electron spectra. Phys. Rev. B 1981, 24, 1725–1738.

    Article  Google Scholar 

  49. Zhou, Z.-Y.; Wang, Q.; Lin, J.-L.; Tian, N.; Sun, S.-G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media. Electrochim. Acta 2010, 55, 7995–7999.

    Article  Google Scholar 

  50. Wang, A. L.; He, X. J.; Lu, X. F.; Xu, H.; Tong, Y. X.; Li, G. R. Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angew. Chem., Int. Ed. 2015, 54, 3669–3673.

    Article  Google Scholar 

  51. Ahmed, M. S.; Jeon, S. Highly active graphene-supported NixPd100–x binary alloyed catalysts for electro-oxidation of ethanol in an alkaline media. ACS Catal. 2014, 4, 1830–1837.

    Article  Google Scholar 

  52. Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation. ACS Appl. Mater. Interfaces 2014, 6, 9481–9187.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Basic Research Program of China (Nos. 2014CB845605 and 2013CB933200), the National Natural Science Foundation of China (Nos. 21521061, 21573238, 21331006, 21571177, and 21520102001), Strtegic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), the Natural Science Foundation of the Fujian Province (No. 2014J05022), and the Chunmiao Project of the Haixi Institute of the Chinese Academy of Sciences (No. CMZX-2014-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Cao.

Electronic supplementary material

12274_2017_1487_MOESM1_ESM.pdf

Facile ultrafine copper seed-mediated approach for fabricating quasi-two-dimensional palladium-copper bimetallic trigonal hierarchical nanoframes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Huang, Y., Wu, D. et al. Facile ultrafine copper seed-mediated approach for fabricating quasi-two-dimensional palladium-copper bimetallic trigonal hierarchical nanoframes. Nano Res. 10, 2810–2822 (2017). https://doi.org/10.1007/s12274-017-1487-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1487-5

Keywords

Navigation