Log in

Rapid and multimodal in vivo bioimaging of cancer cells through in situ biosynthesis of Zn&Fe nanoclusters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Early diagnosis remains highly important for efficient cancer treatment, and hence, there is significant interest in the development of effective imaging strategies. This work reports a new multimodal bioimaging method for accurate and rapid diagnosis of cancer cells by introducing aqueous Fe2+ and Zn2+ ions into cancer cells (i.e., HeLa, U87, and HepG2 cancer cells). We found that the biocompatible metal ions Fe2+ and Zn2+ forced the cancer cells to spontaneously synthesize fluorescent ZnO nanoclusters and magnetic Fe3O4 nanoclusters. These clusters could then be used for multimodal cancer imaging by combining fluorescence imaging with magnetic resonance imaging and computed tomography imaging. Meanwhile, for normal cells (i.e., L02) and tissues, neither fluorescence nor any other obvious difference could be detected between preand post-injection. This multimodal bioimaging strategy based on the in situ biosynthesized Zn&Fe oxide nanoclusters might therefore be useful for early cancer diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peto, J. Cancer epidemiology in the last century and the next decade. Nature 2001, 411, 390–395.

    Article  Google Scholar 

  2. Wang, C. S.; Li, J. Y.; Amatore, C.; Chen, Y.; Jiang, H.; Wang, X. M. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem., Int. Ed. 2011, 50, 11644–11648.

    Article  Google Scholar 

  3. Qiu, J. J.; **ao, Q. F.; Zheng, X. P.; Zhang, L. B.; **ng, H. Y.; Ni, D. L.; Liu, Y. Y.; Zhang, S. J.; Ren, Q. G.; Hua, Y. Q. et al. Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/ photodynamic/radiation synergistic cancer therapy. Nano Res. 2015, 8, 3580–3590.

    Article  Google Scholar 

  4. Lee, N.; Choi, S. H.; Hyeon, T. Nano-sized CTcontrast agents. Adv. Mater. 2013, 25, 2641–2660.

    Google Scholar 

  5. Liu, T.; Wu, G. Y.; Cheng, J. J.; Lu, Q.; Yao, Y. J.; Liu, Z. J.; Zhu, D. C.; Zhou, J.; Xu, J. R.; Zhu, J. et al. Multifunctional lymph-targeted platform based on Mn@mSiO2 nanocomposites: Combining PFOB for dual-mode imaging and DOX for cancer diagnose and treatment. Nano Res. 2016, 9, 473–489.

    Article  Google Scholar 

  6. Yu, J.; Hao, R.; Sheng, F. G.; Xu, L. L.; Li, G. J.; Hou, Y. L. Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Res. 2012, 5, 679–694.

    Article  Google Scholar 

  7. Yang, Z. Z.; Ding, X. G.; Jiang, J. Facile synthesis of magnetic-plasmonic nanocomposites as T1 MRI contrast enhancing and photothermal therapeutic agents. Nano Res. 2016, 9, 787–799.

    Article  Google Scholar 

  8. Shin, T. H.; Choi, J. S.; Yun, S.; Kim, I. S.; Song, H. T.; Kim, Y.; Park, K. I.; Cheon, J. T1 and T2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano 2014, 8, 3393–3401.

    Article  Google Scholar 

  9. Lehnert, B. E.; Goodwin, E. H.; Deshpande, A. Extracellular factor(s) following exposure to a particles can cause sister chromatid exchanges in normal human cells. Cancer Res. 1997, 57, 2164–2171.

    Google Scholar 

  10. Taylor, D.; Hazenberg, J. G.; Lee, T. C. Living with cracks: Damage and repair in human bone. Nat. Mater. 2007, 6, 263–268.

    Article  Google Scholar 

  11. Cohen-Hoshen, E.; Bryant, G. W.; Pinkas, I.; Sperling, J.; Bar-Joseph, I. Exciton-plasmon interactions in quantum dotgold nanoparticle structures. Nano Lett. 2012, 12, 4260–4264.

    Article  Google Scholar 

  12. Wang, J. L.; Zhang, G.; Li, Q. W.; Jiang, H.; Liu, C. Y.; Amatore, C.; Wang, X. M. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Sci. Rep. 2013, 3, 1157.

    Article  Google Scholar 

  13. Gao, S. P.; Chen, D. H.; Li, Q. W.; Ye, J.; Jiang, H.; Amatore, C.; Wang, X. M. Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters. Sci. Rep. 2014, 4, 4384.

    Article  Google Scholar 

  14. Chen, D. H.; Zhao, C. Q.; Ye, J.; Li, Q. W.; Liu, X. L.; Su, M. N.; Jiang, H.; Amatore, C.; Selke, M.; Wang, X. M. In situ biosynthesis of fluorescent platinum nanoclusters: Toward self-bioimaging-guided cancer theranostics. ACS Appl. Mater. Interfaces 2015, 7, 18163–18169.

    Article  Google Scholar 

  15. Chen, Q.; Li, K. G.; Wen, S. H.; Liu, H.; Peng, C.; Cai, H. D.; Shen, M. W.; Zhang, G. X.; Shi, X. Y. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimerentrapped gold nanoparticles. Biomaterials 2013, 34, 5200–5209.

    Article  Google Scholar 

  16. Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.

    Article  Google Scholar 

  17. Park, Y. I.; Kim, J. H.; Lee, K. T.; Jeon, K. S.; Na, H. B.; Yu, J. H.; Kim, H. M.; Lee, N.; Choi, S. H.; Baik, S. I. et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 2009, 21, 4467–4471.

    Article  Google Scholar 

  18. Grootveld, M.; Halliwell, B. Aromatic hydroxylation as a potential measure of hydroxyl-radical formation in vivo. Identification of hydroxylated derivatives of salicylate in human body fluids. Biochem. J. 1986, 237, 499–504.

    Google Scholar 

  19. Jang, S. W.; Lopez-Anido, C.; MacArthur, R.; Svaren, J.; Inglese, J. Identification of drug modulators targeting genedosage disease CMT1A. ACS Chem. Biol. 2012, 7, 1205–1213.

    Article  Google Scholar 

  20. Li, D. L.; Zhao, X. B.; Zhang, L. W.; Li, F.; Ji, N.; Gao, Z. X.; Wang, J. S.; Kang, P.; Liu, Z. F.; Shi, J. Y. et al. 68Ga-PRGD2 PET/CT in the evaluation of glioma: A prospective study. Mol. Pharmaceutics 2014, 11, 3923–3929.

    Article  Google Scholar 

  21. Betzer, O.; Shwartz, A.; Motiei, M.; Kazimirsky, G.; Gispan, I.; Damti, E.; Brodie, C.; Yadid, G.; Popovtzer, R. Nanoparticlebased CT imaging technique for longitudinal and quantitative stem cell tracking within the brain: Application in neuropsychiatric disorders. ACS Nano 2014, 8, 9274–9285.

    Article  Google Scholar 

  22. Sun, C.; Lee, J. S. H.; Zhang, M. Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1252–1265.

    Article  Google Scholar 

  23. Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 2004, 14, 2161–2175.

    Article  Google Scholar 

  24. Terreno, E.; Delli Castelli, D.; Viale, A.; Aime, S. Challenges for molecular magnetic resonance imaging. Chem. Rev. 2010, 110, 3019–3042.

    Article  Google Scholar 

  25. Tong, S.; Hou, S. J.; Zheng, Z. L.; Zhou, J.; Bao, G. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett. 2010, 10, 4607–4613.

    Article  Google Scholar 

  26. Choi, J. S.; Lee, J. H.; Shin, T. H.; Song, H. T.; Kim, E. Y.; Cheon, J. Self-confirming “AND” logic nanoparticles for fault-free MRI. J. Am. Chem. Soc. 2010, 132, 11015–11017.

    Article  Google Scholar 

  27. Su, M. N.; Ye, J.; Li, Q. W.; Ge, W.; Zhang, Y. Y.; Jiang, H.; Amatore, C.; Wang, X. M. In vivo accurate target bio-marking of tumors through in-situ biosynthesized fluorescent zinc nanoclusters. RSC Adv. 2015, 5, 74844–74849.

    Article  Google Scholar 

  28. Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591.

    Article  Google Scholar 

  29. Bienert, G. P.; Schjoerring, J. K.; Jahn, T. P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta 2006, 1758, 994–1003.

    Article  Google Scholar 

  30. Wang, H. P.; Jiang, H.; Wang, X. M. Construction of strong alkaline microcavities for facile synthesis of fluorescencetunable ZnO quantum dots. Chem. Commun. 2010, 46, 6900–6902.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National High-tech R&D Program of China (No. 2015AA020502) and the National Natural Science Foundation of China (Nos. 81325011, 21327902 and 21175020). M. S. acknowledges support from the NSF-PREM program (No. DRM-1523588).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, T., Zhao, C., ur Rehman, F. et al. Rapid and multimodal in vivo bioimaging of cancer cells through in situ biosynthesis of Zn&Fe nanoclusters. Nano Res. 10, 2626–2632 (2017). https://doi.org/10.1007/s12274-017-1465-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1465-y

Keywords

Navigation