Log in

Thermally confined shell coating amplifies the photoacoustic conversion efficiency of nanoprobes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Efficient probes/contrast agents are highly desirable for good-performance photoacoustic (PA) imaging, where the PA signal amplitude of a probe is dominated by both its optical absorption and the conversion efficiency from absorbed laser energy to acoustic waves. Nanoprobes have a unique micromechanism of PA energy conversion due to the size effect, which, however, has not been quantitatively demonstrated and effectively utilized. Here, we present quantitative simulations of the PA signal production process for plasmonmediated nanoprobes based on the finite element analysis method, which were performed to provide a deep understanding of their PA conversion micromechanism. Moreover, we propose a method to amplify the PA conversion efficiency of nanoprobes through the use of thermally confined shell coating, which allows the active control of the conversion efficiency beyond that of conventional probes. Additionally, we deduced the dependence of the conversion efficiency on the shell properties. Gold-nanoparticles/polydimethylsiloxane nanocomposites were experimentally synthesized in the form of gel and microfilms to verify our idea and the simulation results agreed with the experiments. Our work paves the way for the rational design and optimization of nanoprobes with improved conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462.

    Article  Google Scholar 

  2. Diebold, G. J.; Sun, T.; Khan, M. I. Photoacoustic monopole radiation in one, two, and three dimensions. Phys. Rev. Lett. 1991, 67, 3384–3387.

    Article  Google Scholar 

  3. Yuan, Z.; Jiang, H. B. Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media. Appl. Phys. Lett. 2006, 88, 231101.

    Article  Google Scholar 

  4. Galanzha, E. I.; Shashkov, E. V.; Kelly, T.; Kim, J. W.; Yang, L.; Zharov, V. P. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 2009, 4, 855–860.

    Article  Google Scholar 

  5. Hsieh, B. Y.; Chen, S. L.; Ling, T.; Guo, L. J.; Li, P. C. All-optical scanhead for ultrasound and photoacoustic dualmodality imaging. Opt. Express 2012, 20, 1588–1596.

    Article  Google Scholar 

  6. Vargas, H.; Miranda, L. C. M. Photoacoustic and related photothermal techniques. Phys. Rep. 1988, 161, 43–101.

    Article  Google Scholar 

  7. Cox, B.; Laufer, J. G.; Arridge, S. R.; Beard, P. C. Quantitative spectroscopic photoacoustic imaging: A review. J. Biomed. Opt. 2012, 17, 061202.

    Article  Google Scholar 

  8. Wang, X. D.; Pang, Y. J.; Ku, G.; **e, X. Y.; Stoica, G.; Wang, L. V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806.

    Article  Google Scholar 

  9. Jiang, Y. Y.; Deng, Z. J; Yang, D.; Deng, X.; Li, Q.; Sha, Y. L; Li, C. H.; Xu, D. S. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Res. 2015, 8, 2152–2161.

    Article  Google Scholar 

  10. Zha, Z. B.; Deng, Z. J.; Li, Y. Y.; Li, C. H.; Wang, J. R.; Wang, S. M.; Qu, E. Z.; Dai, Z. F. Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 2013, 5, 4462–4467.

    Article  Google Scholar 

  11. Roy, I.; Shetty, D.; Hota, D. R.; Baek, K.; Kim, J.; Kim, C.; Kappert, S.; Kim, K. A multifunctional subphthalocyanine nanosphere for targeting, labeling, and killing of antibioticresistant bacteria. Angew. Chem. 2015, 127, 15367–15370.

    Article  Google Scholar 

  12. Nie, L. M.; Wang, S. J; Wang, X. Y.; Rong, P. F.; Ma, Y.; Liu, G.; Huang, P.; Lu, G. M.; Chen, X. Y. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small 2014, 10, 1585–1593.

    Article  Google Scholar 

  13. De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T. J.; Oralkan, O. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557–562.

    Article  Google Scholar 

  14. Bao, C. C.; Conde, J.; Pan, F.; Li, C.; Zhang, C. L.; Tian, F. R.; Liang, S. J.; de la Fuente, J. M.; Cui, D. X. Gold nanoprisms as a hybrid in vivo cancer theranostic platform for in situ photoacoustic imaging, angiography, and localized hyperthermia. Nano Res. 2016, 9, 1043–1056.

    Article  Google Scholar 

  15. Li, P. C.; Wang, C. R. C.; Shieh, D. B.; Wei, C. W.; Liao, C. K.; Poe, C.; Jhan, S.; Ding, A. A.; Wu, Y. N. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt. Express 2008, 16, 18605–18615.

    Article  Google Scholar 

  16. Bouchard, L. S.; Anwar, M. S.; Liu, G. L.; Hann, B.; **e, Z. H.; Gray, J. W.; Wang, X. D.; Pines, A.; Chen, F. F. Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc. Natl. Acad. Sci. USA 2009, 106, 4085–4089.

    Article  Google Scholar 

  17. Zhang, H. F.; Maslov, K.; Stoica, G.; Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848–851.

    Article  Google Scholar 

  18. Ray, A.; Wang, X. D.; Lee, Y. E. K.; Hah, H. J.; Kim, G.; Chen, T.; Orringer, D. A.; Sagher, O.; Liu, X. J.; Kopelman, R. Targeted blue nanoparticles as photoacoustic contrast agent for brain tumor delineation. Nano Res. 2011, 4, 1163–1173.

    Article  Google Scholar 

  19. Lu, W.; Melancon, M. P.; **ong, C. Y.; Huang, Q.; Elliott, A.; Song, S. L.; Zhang, R.; Flores, L. G.; Gelovani, J. G.; Wang, L. V. et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res. 2011, 71, 6116–6121.

    Article  Google Scholar 

  20. Agarwal, A.; Huang, S. W.; O’Donnell, M.; Day, K. C.; Day, M.; Kotov, N.; Ashkenazi, S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 2007, 102, 064701.

    Article  Google Scholar 

  21. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the nearinfrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.

    Article  Google Scholar 

  22. Chen, Y. S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011, 11, 348–354.

    Article  Google Scholar 

  23. Chen, Y. S.; Frey, W.; Aglyamov, S.; Emelianov, S. Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles. Small 2012, 8, 47–52.

    Article  Google Scholar 

  24. Wang, N. N.; Zhao, Z. L.; Lv, Y. F; Fan, H. H.; Bai, H. R.; Meng, H. M.; Long, Y. Q.; Fu, T.; Zhang, X. B.; Tan, W. H. Gold nanorod-photosensitizer conjugate with extracellular pH-driven tumor targeting ability for photothermal/ photodynamic therapy. Nano Res. 2014, 7, 1291–1301.

    Article  Google Scholar 

  25. Pitsillides, C. M.; Joe, E. K.; Wei, X. B.; Anderson, R. R.; Lin, C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 2003, 84, 4023–4032.

    Article  Google Scholar 

  26. Maas, S. A.; Ellis, B. J.; Ateshian, G. A.; Weiss, J. A. FEBio: Finite elements for biomechanics. J. Biomech. Eng. 2012, 134, 011005.

    Article  Google Scholar 

  27. Groeneveld, R. H. M.; Sprik, R.; Lagendijk, A. Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au. Phys. Rev. B 1995, 51, 11433–11445.

    Article  Google Scholar 

  28. Furlani, E. P.; Karampelas, I. H.; **e, Q. Analysis of pulsed laser plasmon-assisted photothermal heating and bubble generation at the nanoscale. Lab Chip 2012, 12, 3707–3719.

    Article  Google Scholar 

  29. Rioux, D.; Vallières, S.; Besner, S.; Muñoz, P.; Mazur, E.; Meunier, M. An analytic model for the dielectric function of Au, Ag, and their alloys. Adv. Opt. Mater. 2014, 2, 176–182.

    Article  Google Scholar 

  30. Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.

    Article  Google Scholar 

  31. Hatef, A.; Darvish, B.; Dagallier, A.; Davletshin, Y. R.; Johnston, W.; Kumaradas, J. C.; Rioux, D.; Meunier, M. Analysis of photoacoustic response from gold–silver alloy nanoparticles irradiated by short pulsed laser in water. J. Phys. Chem. C 2015, 119, 24075–24080.

    Article  Google Scholar 

  32. Calasso, I. G.; Craig, W.; Diebold, G. J. Photoacoustic point source. Phys. Rev. Lett. 2001, 86, 3550–3553.

    Article  Google Scholar 

  33. Rosencwaig, A.; Gersho, A. Theory of the photoacoustic effect with solids. J. Appl. Phys. 1976, 47, 64–69.

    Article  Google Scholar 

  34. Pelivanov, I. M.; Kopylova, D. S.; Podymova, N. B.; Karabutov, A. A. Optoacoustic method for determination of submicron metal coating properties: Theoretical consideration. J. Appl. Phys. 2009, 106, 013507.

    Article  Google Scholar 

  35. Brugger, K. Generalized Grüneisen parameters in the anisotropic Debye model. Phys. Rev. 1965, 137, A1826.

    Article  Google Scholar 

  36. Baac, H. W.; Ok, J. G.; Maxwell, A.; Lee, K. T.; Chen, Y. C.; Hart, A. J.; Xu, Z.; Yoon, E.; Guo, L. J. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy. Sci. Rep. 2012, 2, 989.

    Article  Google Scholar 

  37. Jo, B. H.; Van Lerberghe, L. M.; Motsegood, K. M.; Beebe, D. J. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromech. Syst. 2009, 9, 76–81.

    Article  Google Scholar 

  38. Toepke, M. W.; Beebe, D. J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 2006, 6, 1484–1486.

    Article  Google Scholar 

  39. Zhang, Q.; Xu, J. J.; Liu, Y.; Chen, H. Y. In-situ synthesis of poly(dimethylsiloxane)–gold nanoparticles composite films and its application in microfluidic systems. Lab Chip 2008, 8, 352–357.

    Article  Google Scholar 

  40. Scott, A.; Gupta, R.; Kulkarni, G. U. A simple water-based synthesis of Au nanoparticle/PDMS composites for water purification and targeted drug release. Macromol. Chem. Phys. 2010, 211, 1640–1647.

    Article  Google Scholar 

  41. Lin, C. P.; Kelly, M. W. Cavitation and acoustic emission around laser-heated microparticles. Appl. Phys. Lett. 1998, 72, 2800–2802.

    Article  Google Scholar 

  42. Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat. Commun. 2012, 3, 618.

    Article  Google Scholar 

  43. McLaughlan, J. R.; Roy, R. A.; Ju, H. Y.; Murray, T. W. Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation. Opt. Lett. 2010, 35, 2127–2129.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da **ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Qin, H., Yang, S. et al. Thermally confined shell coating amplifies the photoacoustic conversion efficiency of nanoprobes. Nano Res. 9, 3644–3655 (2016). https://doi.org/10.1007/s12274-016-1234-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1234-3

Keywords

Navigation