Log in

Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A scalable approach to obtaining high-density, large-area single-walled carbon nanotube (SWNT) arrays is essential for realizing the full potential of SWNTs in practical electronic devices; this is still a great challenge. Here, we report an improved synthetic method for large-area growth of ultra-high-density SWNT arrays on sapphire surfaces by combining Trojan catalysts (released from the substrate, to assure ultra-high density) with Mo nanoparticles (loaded on the surface, to stabilize the released Trojan catalysts) as cooperating catalysts. Dense and perfectly aligned SWNTs covered the entire substrate and the local density was as high as 160 tubes/μm. Field-effect transistors (FETs) built on such arrays gave an output current density of −488 μA/μm at the drain-source voltage (V ds) = the gate-source voltage (V gs) =–2 V, corresponding to an on-conductance per width of 244 μS/μm. These results confirm the wide range of potential applications of Trojan-Mo catalysts in the structure-controlled growth of SWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

    Article  Google Scholar 

  2. Che, Y. C.; Chen, H. T.; Gui, H.; Liu, J.; Liu, B. L.; Zhou, C. W. Review of carbon nanotube nanoelectronics and macroelectronics. Semicond.Sci. Technol. 2014, 29, 073001.

    Article  Google Scholar 

  3. Kang, L. X.; Hu, Y.; Liu, L. L.; Wu, J. X.; Zhang, S. C.; Zhao, Q. C.; Ding, F.; Li, Q. W.; Zhang, J. Growth of closepacked semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett. 2015, 15, 403–409.

    Article  Google Scholar 

  4. Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S.-J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.

    Article  Google Scholar 

  5. Franklin, A. D. Electronics: The road to carbon nanotube transistors. Nature 2013, 498, 443–444.

    Article  Google Scholar 

  6. Wang, C.; Ryu, K.; Arco, L.; Badmaev, A.; Zhang, J. L.; Lin, X.; Che, Y. C.; Zhou, C. W. Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer. Nano Res. 2010, 3, 831–842.

    Article  Google Scholar 

  7. Shulaker, M. M.; Wei, H.; Patil, N.; Provine, J.; Chen, H.-Y.; Wong, H. S. P.; Mitra, S. Linear increases in carbon nanotube density through multiple transfer technique. Nano Lett. 2011, 11, 1881–1886.

    Article  Google Scholar 

  8. Cao, Q.; Han, S.-J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.

    Article  Google Scholar 

  9. Brady, G. J.; Joo, Y.; Wu, M.-Y.; Shea, M. J.; Gopalan, P.; Arnold, M. S. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 2014, 8, 11614–11621.

    Article  Google Scholar 

  10. Cao, Q.; Han, S.-J.; Tulevski, G. S. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch. Nat. Commun. 2014, 5, 5071.

    Article  Google Scholar 

  11. Park, S.; Pitner, G.; Giri, G.; Koo, J. H.; Park, J.; Kim, K.; Wang, H. L.; Sinclair, R.; Wong, H. S. P.; Bao, Z. Largearea assembly of densely aligned single-walled carbon nanotubes using solution shearing and their application to field-effect transistors. Adv. Mater. 2015, 27, 2656–2662.

    Article  Google Scholar 

  12. Wang, Y. L.; Pillai, S. K. R.; Chan-Park, M. B. Highperformance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique. Small 2013, 9, 2960–2969.

    Article  Google Scholar 

  13. Chen, Y. B.; Zhang, J. Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications. Acc. Chem. Res. 2014, 47, 2273–2281.

    Article  Google Scholar 

  14. Feng, C. Q.; Yao, Y. G.; Zhang, J.; Liu, Z. F. Nanobarrierterminated growth of single-walled carbon nanotubes on quartz surfaces. Nano Res. 2009, 2, 768–773.

    Google Scholar 

  15. Chen, Y. B.; Zhang, Y. Y.; Hu, Y.; Kang, L. X.; Zhang, S. C.; **e, H. H.; Liu, D.; Zhao, Q. C.; Li, Q. W.; Zhang, J. State of the art of single-walled carbon nanotube synthesis on surfaces. Adv. Mater. 2014, 26, 5898–5922.

    Article  Google Scholar 

  16. Zhou, W. W.; Rutherglen, C.; Burke, P. J. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 2008, 1, 158–165.

    Article  Google Scholar 

  17. Zhang, Y. Y.; Zhang, Y.; **an, X. J.; Zhang, J.; Liu, Z. F. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using xenon-lamp irradiation. J. Phys. Chem. C 2008, 112, 3849–3856.

    Article  Google Scholar 

  18. Ding, L.; Zhou, W. W.; McNicholas, T. P.; Wang, J. Y.; Chu, H. B.; Li, Y.; Liu, J. Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Res. 2009, 2, 903–910.

    Article  Google Scholar 

  19. Li, Y.; Cui, R. L.; Ding, L.; Liu, Y.; Zhou, W. W.; Zhang, Y.; **, Z.; Peng, F.; Liu, J. How catalysts affect the growth of single-walled carbon nanotubes on substrates. Adv. Mater. 2010, 22, 1508–1515.

    Article  Google Scholar 

  20. Zhou, W. W.; Ding, L.; Liu, J. Role of catalysts in the surface synthesis of single-walled carbon nanotubes. Nano Res. 2009, 2, 593–598.

    Article  Google Scholar 

  21. He, M. S.; Duan, X. J.; Wang, X.; Zhang, J.; Liu, Z. F.; Robinson, C. Iron catalysts reactivation for efficient CVD growth of SWNT with base-growth mode on surface. J. Phys. Chem. B 2004, 108, 12665–12668.

    Article  Google Scholar 

  22. Chen, Y. B.; Zhang, J. Diameter controlled growth of singlewalled carbon nanotubes from SiO2 nanoparticles. Carbon 2011, 49, 3316–3324.

    Article  Google Scholar 

  23. Hong, S. W.; Banks, T.; Rogers, J. A. Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv. Mater. 2010, 22, 1826–1830.

    Article  Google Scholar 

  24. Wu, B.; Geng, D. C.; Guo, Y. L.; Huang, L. P.; Chen, J. Y.; Xue, Y. Z.; Yu, G.; Liu, Y. Q.; Kajiura, H.; Li, Y. M. Ultrahigh density modulation of aligned single-walled carbon nanotube arrays. Nano Res. 2011, 4, 931–937.

    Article  Google Scholar 

  25. Zhou, W. W.; Ding, L.; Yang, S.; Liu, J. Synthesis of highdensity, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods. ACS Nano 2011, 5, 3849–3857.

    Article  Google Scholar 

  26. Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 2015, 6, 6099.

    Google Scholar 

  27. Hong, G.; Chen, Y. B.; Li, P.; Zhang, J. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts. Carbon 2012, 50, 2067–2082.

    Article  Google Scholar 

  28. Ago, H.; Uehara, N.; Ikeda, K.-I.; Ohdo, R.; Nakamura, K.; Tsuji, M. Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized Raman spectroscopy. Chem. Phys. Lett. 2006, 421, 399–403.

    Article  Google Scholar 

  29. An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 2002, 124, 13688–13689.

    Article  Google Scholar 

  30. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

    Article  Google Scholar 

  31. Youn, S. K.; Park, H. G. Morphological evolution of Fe–Mo bimetallic catalysts for diameter and density modulation of vertically aligned carbon nanotubes. J. Phys. Chem. C 2013, 117, 18657–18665.

    Article  Google Scholar 

  32. Li, J.; He, Y. J.; Han, Y. M.; Liu, K.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 2012, 12, 4095–4101.

    Article  Google Scholar 

  33. Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879–17886.

    Article  Google Scholar 

  34. Homma, Y.; Suzuki, S.; Kobayashi, Y.; Nagase, M.; Takagi, D. Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy. Appl. Phys. Lett. 2004, 84, 1750–1752.

    Article  Google Scholar 

  35. Petit, P.; Salem, D.; He, M. S.; Paillet, M.; Parret, R.; Sauvajol, J.-L.; Zahab, A. Study of the thermal stability of supported catalytic nanoparticles for the growth of singlewalled carbon nanotubes with narrow diameter distribution by chemical vapor deposition of methane. J. Phys. Chem. C 2012, 116, 24123–24129.

    Article  Google Scholar 

  36. Lin, M.; Ying Tan, J. P.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y.-L. Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett. 2006, 6, 449–452.

    Article  Google Scholar 

  37. Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J.-Q.; Xu, Z.; Peng, F. et al. Chiralityspecific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.

    Google Scholar 

  38. He, Y. J.; Li, D. Q.; Li, T. Y.; Lin, X. Y.; Zhang, J.; Wei, Y.; Liu, P.; Zhang, L. N.; Wang, J. P.; Li, Q. Q. et al. Metalfilm- assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Res. 2014, 7, 981–989.

    Google Scholar 

  39. Ding, L.; Yuan, D. N.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.

    Article  Google Scholar 

  40. Fu, Q.; Wagner, T. Interaction of nanostructured metal overlayers with oxide surfaces. Surf.Sci. Rep. 2007, 62, 431–498.

    Article  Google Scholar 

  41. Campbell, C. T. Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. Surf.Sci. Rep. 1997, 27, 1–111.

    Article  Google Scholar 

  42. Zhao, M.-Q.; Zhang, Q.; Zhang, W.; Huang, J.-Q.; Zhang, Y. H.; Su, D. S.; Wei, F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides. J. Am. Chem. Soc. 2010, 132, 14739–14741.

    Article  Google Scholar 

  43. Amama, P. B.; Pint, C. L.; Kim, S. M.; McJilton, L.; Eyink, K. G.; Stach, E. A.; Hauge, R. H.; Maruyama, B. Influence of alumina type on the evolution and activity of aluminasupported Fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano 2010, 4, 895–904.

    Article  Google Scholar 

  44. Peng, L.-M.; Zhang, Z. Y.; Wang, S. Carbon nanotube electronics: Recent advances. Mater.Today 2014, 17, 433–442.

    Article  Google Scholar 

  45. Ding, L.; Wang, Z. X.; Pei, T.; Zhang, Z. Y.; Wang, S.; Xu, H. L.; Peng, F.; Li, Y.; Peng, L.-M. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering. ACS Nano 2011, 5, 2512–2519.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingwen Li or ** Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, L., Hu, Y., Zhong, H. et al. Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface. Nano Res. 8, 3694–3703 (2015). https://doi.org/10.1007/s12274-015-0869-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0869-9

Keywords

Navigation