Log in

A facile assay for direct colorimetric visualization of lipopolysaccharides at low nanomolar level

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report a facile assay for the rapid visual detection of lipopolysaccharide (LPS) molecules down to the low nanomolar level by taking advantage of the electrostatic interaction between LPS molecules and cysteamine-modified gold nanoparticles (CSH-Au NPs). The large amount of negatively charged groups on the LPS molecules make LPS highly negatively charged. Thus, when modified with cysteamine, the positively charged gold nanoparticles can aggregate in the presence of trace amounts of LPS. The probe is simple, does not require any advanced instrumentation, and the limit of detection (LOD) was determined to be as low as 3.3 × 10−10 mol/L. To the best of our knowledge, it is the most sensitive synthetic LPS sensor reported so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seltmann, G.; Holst, O. The Bacterial Cell Wall; Springer: New York, 2002.

    Google Scholar 

  2. Raetz, C. R. H. Biochemistry of Endotoxins. Annu. Rev. Biochem. 1990, 59, 129–170.

    Article  CAS  Google Scholar 

  3. US FDA, CDER, CBER, CDRH, CVM. Guideline on validation of the Limulus amebocyte lysate test as an end-product endotoxin test for human and animal parenteral drugs, biological products, and medical devices; CDER, CBER, CDRH, CVM (Eds): Rockville, MD, USA, 20857, 1987.

  4. Zhang, G. H.; Baek, L.; Nielsen, P. E.; Buchardt, O.; Koch, C. Sensitive quantitation of endotoxin by enzyme-linked immunosorbent assay with monoclonal antibody against Limulus peptide C. J. Clin. Microbiol. 1994, 32, 416–422.

    CAS  Google Scholar 

  5. Roslansky, P. F.; Novitsky, T. J. Sensitivity of Limulus amebocyte lysate (LAL) to LAL-reactive glucans. J. Clin. Microbiol. 1991, 29, 2477–2483.

    CAS  Google Scholar 

  6. Rangin, M.; Basu, A. Lipopolysaccharide identification with functionalized polydiacetylene liposome sensors. J. Am. Chem. Soc. 2004, 126, 5038–5039.

    Article  CAS  Google Scholar 

  7. Voss, S; Fischer, R.; Jung, G.; Wiesmüller, K. -H.; Brock, R. A fluorescence-based synthetic LPS sensor. J. Am. Chem. Soc. 2007, 129, 554–561.

    Article  CAS  Google Scholar 

  8. Ganesh, V.; Bodewits, K.; Bartholdson, S. J.; Natale, D.; Campopiano, D. J.; Mareque-Rivas J. C. Effective binding and sensing of lipopolysaccharide: Combining complementary pattern recognition receptors. Angew. Chem., Int. Edit. 2009, 48, 356–360.

    Article  CAS  Google Scholar 

  9. Zeng, L.; Wu, J.; Dai Q.; Liu, W.; Wang, P.; Lee, C. -S. Sensing of bacterial endotoxin in aqueous solution by supramolecular assembly of pyrene derivative. Org. Lett. 2010, 12, 4014–4017.

    Article  CAS  Google Scholar 

  10. Wu, J. C.; Zawistowski, A.; Ehrmann, M.; Yi, T.; Schmuck, C. Peptide functionalized polydiacetylene liposomes act as a fluorescent turn-on sensor for bacterial lipopolysaccharide. J. Am. Chem. Soc. 2011, 133, 9720–9723.

    Article  CAS  Google Scholar 

  11. Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.

    Article  CAS  Google Scholar 

  12. Sperling, R. A.; Gil, P. R.; Zhang, F.; Zanella, M.; Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908.

    Article  CAS  Google Scholar 

  13. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

    Article  CAS  Google Scholar 

  14. Nie, Z. H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15–25.

    Article  CAS  Google Scholar 

  15. Liu, D. B.; Wang, Z.; Jiang, X. Y. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 2011, 3, 1421–1433.

    Article  CAS  Google Scholar 

  16. Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection. Nano Res. 2010, 3, 557–563.

    Article  CAS  Google Scholar 

  17. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of poly-nucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081.

    Article  CAS  Google Scholar 

  18. Liu, J. W.; Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642–6643.

    Article  CAS  Google Scholar 

  19. Neely, A.; Perry, C.; Varisli, B.; Singh, A. K.; Arbneshi, T.; Senapati D.; Kalluri, J. R.; Ray, P. C. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 2009, 3, 2834–2840.

    Article  CAS  Google Scholar 

  20. Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G. Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 2005, 127, 6516–6517.

    Article  CAS  Google Scholar 

  21. Lee J. -S.; Han, M. S.; Mirkin, C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4093–4096.

    Article  CAS  Google Scholar 

  22. Darbha, G. K.; Ray, A.; Ray, P. C. Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. ACS Nano 2007, 1, 208–214.

    Article  CAS  Google Scholar 

  23. Chi, H; Liu, B. H.; Guan, G. J.; Zhang, Z. P.; Han, M. -Y. A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles. Analyst 2010, 135, 1070–1075.

    Article  CAS  Google Scholar 

  24. Liu, J. W.; Lu, Y. Fast Colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed. 2006, 45, 90–94.

    Article  CAS  Google Scholar 

  25. Zhou, Y; Wang, S. X.; Zhang, K.; Jiang, X. Y. Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew. Chem. Int. Ed. 2008, 47, 7454–7456.

    Article  CAS  Google Scholar 

  26. Jiang, Y.; Zhao, H.; Zhu, N.; Lin, Y.; Yu, P.; Mao, L. A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angew. Chem. Int. Ed. 2008, 47, 8601–8604.

    Article  CAS  Google Scholar 

  27. Ai, K.; Liu, Y. L.; Lu, L. H. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem. Soc. 2009, 131, 9496–9497.

    Article  CAS  Google Scholar 

  28. Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H. T.; Ray, P. C. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc. 2009, 131, 13806–13812.

    Article  CAS  Google Scholar 

  29. Wang, L. B.; Zhu, Y. Y.; Xu, L. G.; Chen, W.; Kuang, H.; Liu, L. Q.; Agarwal, A.; Xu, C. L.; Kotov, N. A. Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew. Chem. Int. Ed. 2010, 49, 5472–5475.

    Article  CAS  Google Scholar 

  30. Jiang, Y.; Zhao, H.; Lin, Y. Q.; Zhu, N. N.; Ma, Y. R.; Mao, L. Q. Colorimetric detection of glucose in rat brain using gold nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 4800–4804.

    Article  CAS  Google Scholar 

  31. Kong, B.; Zhu, A. W.; Luo, Y. P.; Tian, Y.; Yu, Y. Y.; Shi, G. Y. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew. Chem. Int. Ed. 2011, 50, 1837–1840.

    Article  CAS  Google Scholar 

  32. Zhang, J.; Wang, L. H.; Pan, D.; Song, S. P.; Boey, F. Y. C.; Zhang, H.; Fan, C. H. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 2008, 4, 1196–1200.

    Article  CAS  Google Scholar 

  33. Qi, W. J.; Wu, D.; Ling, J.; Huang, C. Z. Visual and light scattering spectrometric detections of melamine with polythymine-stabilized gold nanoparticles through specific triple hydrogen-bonding recognition. Chem. Commun. 2010, 4893–4895.

  34. Wu, Z. J.; Zhao, H.; Xue, Y.; Cao, Q.; Yang, J.; He, Y. J.; Li, X. J.; Yuan, Z. B. Colorimetric detection of melamine during the formation of gold nanoparticles. Biosens. Bioelectron. 2011, 26, 2574–2578.

    Article  CAS  Google Scholar 

  35. Kuang, H.; Chen, W.; Yan, W. J.; Xu, L. G.; Zhu, Y. Y.; Liu, L. Q.; Chu, H. Q.; Peng, C. F.; Wang, L. B.; Kotov, N. A.; Xu, C. L. Crown ether assembly of gold nanoparticles: Melamine sensor. Biosens. Bioelectron. 2011, 26, 2032–2037.

    Article  CAS  Google Scholar 

  36. Sun, J. Y.; Ge, J. H.; Liu, W. M.; Fan, Z. Y.; Zhang, H. Y.; Wang, P. F. Highly sensitive and selective colorimetric visualization of streptomycin in raw milk using Au nano-particles supramolecular assembly. Chem. Commun. 2011, 9888–9890.

  37. Shands, J. W. Evidence for a bilayer structure in Gram-negative lipopolysaccharide-Relationship to toxicity. Infect. Immun. 1971, 4, 167–172.

    CAS  Google Scholar 

  38. Mayberrycarson, K. J.; Roth, I. L.; Smith, P. F. Ultrastructure of lipopolysaccharide isolated from thermoplasma-acidophilum. J. Bacteriol. 1975, 121, 700–703.

    CAS  Google Scholar 

  39. Niidome, T.; Nakashima, K.; Takahashi, H.; Niidome, Y. Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem. Commun. 2004, 1978–1979.

  40. Chan, S.; Horner, S. R.; Fauchet, P. M.; Miller, B. L. Identification of Gram negative bacteria using nanoscale silicon microcavities. J. Am. Chem. Soc. 2001, 123, 11797–11798.

    Article  CAS  Google Scholar 

  41. Li, C. H.; Budge, L. P.; Driscoll, C. D.; Willardson, B. M.; Allman, G. W.; Savage P. B. Incremental conversion of outer-membrane permeabilizers into potent antibiotics for gram-negative bacteria. J. Am. Chem. Soc. 1999, 121, 931–940.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Ge, J., Liu, W. et al. A facile assay for direct colorimetric visualization of lipopolysaccharides at low nanomolar level. Nano Res. 5, 486–493 (2012). https://doi.org/10.1007/s12274-012-0234-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0234-1

Keywords

Navigation