Log in

Strategy for enhancing the therapeutic efficacy of histone deacetylase inhibitor dacinostat: the novel paradigm to tackle monotonous cancer chemoresistance

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Histone deacetylases (HDACs) regulate gene expression by creating the closed state of chromatin via histone hypoacetylation. Histone acetylation deregulation caused by aberrant expression of classical HDACs leads to imprecise gene regulation culminating in various diseases including cancer. Histone deacetylase inhibitors (HDACi), the small-molecules modulating the biological function of HDACs have shown promising results in inducing cell cycle arrest, differentiation and apoptosis in tumour models. HDACi do not show desired cytotoxic effect when used in monotherapy due to triggering of various resistance mechanisms in cancer cells emphasizing the desperate need of novel strategies that can be used to overcome such challenges. The present article provides intricate details about the novel HDACi dacinostat (LAQ-824) against multiple myeloma and acute myeloid leukaemia. The distinct molecular mechanisms modulated by dacinostat in exerting cytotoxic effect against the defined malignancies have also been detailed. The article also explains the strategy that can be used to circumvent the conventional therapy resistant cases and for enhancing the therapeutic efficacy of dacinostat for effective anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bali P, George P, Cohen P, Tao J, Guo F, Sigua C, Vishvanath A, Scuto A, Annavarapu S, Fiskus W, Moscinski L, Atadja P, Bhalla K (2004) Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3. Clin Cancer Res 10:4991–4997

    Article  CAS  PubMed  Google Scholar 

  • Barbey JT, Pezzullo JC, Soignet SL (2003) Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J Clin Oncol 21:3609–3615

    Article  CAS  PubMed  Google Scholar 

  • Bates SE, Rosing DR, Fojo T, Piekarz RL (2006) Challenges of evaluating the cardiac effects of anticancer agents. Clin Cancer Res 12:3871–3874

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan MP, Kato T, Okauchi T, Nishino N, Maeda S, Nishino TG, Yoshida M (2006) Chlamydocin analogs bearing carbonyl group as possible ligand toward zinc atom in histone deacetylases. Bioorgan Med Chem 14:3438–3446

    Article  CAS  Google Scholar 

  • Bieliauskas AV, Pflum MKH (2008) Isoform-selective histone deacetylase inhibitors. Chem Soc Rev 37:1402–1413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bluethner T, Niederhagen M, Caca K, Serr F, Witzigmann H, Moebius C, Mossner J, Wiedmann M (2007) Inhibition of histone deacetylase for the treatment of biliary tract cancer: a new effective pharmacological approach. World J Gastroenterol 13:4761–4770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brana I, Tabernero J (2010) Cardiotoxicity. Ann Oncol 21(Suppl 7):vii173–vii179

    Article  PubMed  Google Scholar 

  • Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR, Kong Y, Rothermel BA, Gillette TG, Hill JA (2011) Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA 108:4123–4128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Catley L, Weisberg E, Tai YT, Atadja P, Remiszewski S, Hideshima T, Mitsiades N, Shringarpure R, LeBlanc R, Chauhan D, Munshi NC, Schlossman R, Richardson P, Griffin J, Anderson KC (2003) NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 102:2615–2622

    Article  CAS  PubMed  Google Scholar 

  • Chauhan D, Hideshima T, Pandey P, Treon S, Teoh G, Raje N, Rosen S, Krett N, Husson H, Avraham S, Kharbanda S, Anderson KC (1999) RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells. Oncogene 18:6733–6740

    Article  CAS  PubMed  Google Scholar 

  • Chauhan D, Hideshima T, Rosen S, Reed JC, Kharbanda S, Anderson KC (2001) Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells. J Biol Chem 276:24453–24456

    Article  CAS  PubMed  Google Scholar 

  • Cheung WC, Van Ness B (2001) The bone marrow stromal microenvironment influences myeloma therapeutic response in vitro. Leukemia 15:264–271

    Article  CAS  PubMed  Google Scholar 

  • Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  • Chun P (2015) Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res 38:933–949

    Article  CAS  PubMed  Google Scholar 

  • Colussi C, Mozzetta C, Gurtner A, Illi B, Rosati J, Straino S, Ragone G, Pescatori M, Mai A, Capogrossi MC, Puri PL, Gaetano C (2008) HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc Natl Acad Sci USA 105:19183–19187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Ponti F, Poluzzi E, Montanaro N, Ferguson J (2000) QTc and psychotropic drugs. Lancet (London, England) 356:75–76

    Article  Google Scholar 

  • De Ponti F, Poluzzi E, Montanaro N (2001) Organising evidence on QT prolongation and occurrence of Torsades de Pointes with non-antiarrhythmic drugs: a call for consensus. Eur J Clin Pharmacol 57:185–209

    Article  PubMed  CAS  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed Central  PubMed  Google Scholar 

  • Deleu S, Menu E, Valckenborgh EV, Van Camp B, Fraczek J, Vande Broek I, Rogiers V, Vanderkerken K (2009) Histone deacetylase inhibitors in multiple myeloma. Hematol Rev 1:e9

    PubMed Central  Google Scholar 

  • Ederhy S, Cohen A, Dufaitre G, Izzedine H, Massard C, Meuleman C, Besse B, Berthelot E, Boccara F, Soria J-C (2009) QT interval prolongation among patients treated with angiogenesis inhibitors. Targeted Oncol 4:89–97

    Article  Google Scholar 

  • Fischer TPA, Bhalla K, Beck J, Morganroth J, Laird GH, Sharma S, Scott JW, Dugan M, Giles F (2005) Results of cardiac monitoring during Phase I trials of a novel histone deacetylase (HDAC) inhibitor LBH589 in patients with advanced solid tumors and hematologic malignancies. J Clin Oncol 23(Suppl 16), (Abstract 3106)

  • Fischle W, Kiermer V, Dequiedt F, Verdin E (2001) The emerging role of class II histone deacetylases. Biochem Cell Biol 79:337–348

    Article  CAS  PubMed  Google Scholar 

  • Galmozzi A, Mitro N, Ferrari A, Gers E, Gilardi F, Godio C, Cermenati G, Gualerzi A, Donetti E, Rotili D, Valente S, Guerrini U, Caruso D, Mai A, Saez E, De Fabiani E, Crestani M (2013) Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 62:732–742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ganai SA (2015) Panobinostat: the small molecule metalloenzyme inhibitor with marvelous anticancer activity. Curr Top Med Chem

  • Ganai SA (2015) HDAC inhibitors entinostat and suberoylanilide hydroxamic acid (SAHA): The Ray of Hope for Cancer Therapy

  • Ganai SA, Shanmugam K, Mahadevan V (2015a) Energy-optimised pharmacophore approach to identify potential hotspots during inhibition of Class II HDAC isoforms. J Biomol Struct Dyn 33:374–387

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA, Kalladi SM, Mahadevan V (2015b) HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. J Biomol Struct Dyn 33:1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Gao M, Yang G, Tao Y, Kong Y, Yang R, Meng X, Ai G, Wei R, Wu H, Wu X, Shi J (2015) Synergistic activity of carfilzomib and panobinostat in multiple myeloma cells via modulation of ROS generation and ERK1/2. BioMed Res Int 2015:459052

    PubMed Central  PubMed  Google Scholar 

  • Gibbs A, Schwartzman J, Deng V, Alumkal J (2009) Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci USA 106:16663–16668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilliland DG, Griffin JD (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100:1532–1542

    Article  CAS  PubMed  Google Scholar 

  • Gryder BE, Sodji QH, Oyelere AK (2012) Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem 4:505–524

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Sigua C, Tao J, Bali P, George P, Li Y, Wittmann S, Moscinski L, Atadja P, Bhalla K (2004) Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 64:2580–2589

    Article  CAS  PubMed  Google Scholar 

  • Hasserjian RP (2013) Acute myeloid leukemia: advances in diagnosis and classification. Int J Lab Hematol 35:358–366

    Article  CAS  PubMed  Google Scholar 

  • Hideshima T, Cottini F, Ohguchi H, Jakubikova J, Gorgun G, Mimura N, Tai YT, Munshi NC, Richardson PG, Anderson KC (2015) Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma. Blood Cancer J 5:e312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Highsmith KN, Chen SE, Horowitz S (2014) Carfilzomib and pomalidomide: recent advances in the treatment of multiple myeloma. Pharmacotherapy 34:927–940

    Article  CAS  PubMed  Google Scholar 

  • Imanishi R, Ohtsuru A, Iwamatsu M, Iioka T, Namba H, Seto S, Yano K, Yamashita S (2002) A histone deacetylase inhibitor enhances killing of undifferentiated thyroid carcinoma cells by p53 gene therapy. J Clin Endocrinol Metab 87:4821–4824

    Article  CAS  PubMed  Google Scholar 

  • Isaacs JS, Xu W, Neckers L (2003) Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3:213–217

    Article  CAS  PubMed  Google Scholar 

  • Johannessen CU, Johannessen SI (2003) Valproate: past, present, and future. CNS Drug Rev 9:199–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones J, Juengel E, Mickuckyte A, Hudak L, Wedel S, Jonas D, Blaheta RA (2009) The histone deacetylase inhibitor valproic acid alters growth properties of renal cell carcinoma in vitro and in vivo. J Cell Mol Med 13:2376–2385

    Article  PubMed  Google Scholar 

  • Jurczyszyn A, Legieć W, Helbig G, Hus M, Kyrcz-Krzemień S, Skotnicki AB (2014) New drugs in multiple myeloma—role of carfilzomib and pomalidomide. Contemp Oncol 18:17–21

    CAS  Google Scholar 

  • Kato Y, Salumbides BC, Wang XF, Qian DZ, Williams S, Wei Y, Sanni TB, Atadja P, Pili R (2007) Antitumor effect of the histone deacetylase inhibitor LAQ824 in combination with 13-cis-retinoic acid in human malignant melanoma. Mol Cancer Ther 6:70–81

    Article  CAS  PubMed  Google Scholar 

  • Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7:854–868

    Article  CAS  PubMed  Google Scholar 

  • Khan IA (2002) Clinical and therapeutic aspects of congenital and acquired long QT syndrome. Am J Med 112:58–66

    Article  PubMed  Google Scholar 

  • Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T (1993) Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 268:22429–22435

    Article  CAS  PubMed  Google Scholar 

  • Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4:276–284

    Article  CAS  PubMed  Google Scholar 

  • Libby EN, Becker PS, Burwick N, Green DJ, Holmberg L, Bensinger WI (2015) Panobinostat: a review of trial results and future prospects in multiple myeloma. Expert Rev Hematol 8:9–18

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Mateos MV, Ocio EM, San Miguel JF (2013) Novel generation of agents with proven clinical activity in multiple myeloma. Semin Oncol 40:618–633

    Article  CAS  PubMed  Google Scholar 

  • Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B, Steffen B, Matsumura I, Kanakura Y, Böhmer FD, Müller-Tidow C, Berdel WE, Serve H (2003) Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 101:3164–3173

    Article  CAS  PubMed  Google Scholar 

  • Mottamal M, Zheng S, Huang TL, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20:3898–3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munster PN, Rubin EH, Van Belle S, Friedman E, Patterson JK, Van Dyck K, Li X, Comisar W, Chodakewitz JA, Wagner JA, Iwamoto M (2009) A single supratherapeutic dose of vorinostat does not prolong the QTc interval in patients with advanced cancer. Clin Cancer Res 15:7077–7084

    Article  CAS  PubMed  Google Scholar 

  • Nimmanapalli R, Fuino L, Bali P, Gasparetto M, Glozak M, Tao J, Moscinski L, Smith C, Wu J, Jove R, Atadja P, Bhalla K (2003) Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res 63:5126–5135

    CAS  PubMed  Google Scholar 

  • Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220

    Article  CAS  PubMed  Google Scholar 

  • Perrin MJ, Subbiah RN, Vandenberg JI, Hill AP (2008) Human ether-a-go-go related gene (hERG) K+ channels: function and dysfunction. Prog Biophys Mol Biol 98:137–148

    Article  CAS  PubMed  Google Scholar 

  • Ponte ML, Keller GA, Di Girolamo G (2010) Mechanisms of drug induced QT interval prolongation. Curr Drug Saf 5:44–53

    Article  CAS  PubMed  Google Scholar 

  • Qian DZ, Wang X, Kachhap SK, Kato Y, Wei Y, Zhang L, Atadja P, Pili R (2004) The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 64:6626–6634

    Article  CAS  PubMed  Google Scholar 

  • Rascle A, Johnston JA, Amati B (2003) Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5. Mol Cell Biol 23:4162–4173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rasheed W, Bishton M, Johnstone RW, Prince HM (2008) Histone deacetylase inhibitors in lymphoma and solid malignancies. Expert Rev Anticancer Ther 8:413–432

    Article  CAS  PubMed  Google Scholar 

  • Remiszewski SW, Sambucetti LC, Bair KW, Bontempo J, Cesarz D, Chandramouli N, Chen R, Cheung M, Cornell-Kennon S, Dean K, Diamantidis G, France D, Green MA, Howell KL, Kashi R, Kwon P, Lassota P, Martin MS, Mou Y, Perez LB, Sharma S, Smith T, Sorensen E, Taplin F, Trogani N, Versace R, Walker H, Weltchek-Engler S, Wood A, Wu A, Atadja P (2003) N-hydroxy-3-phenyl-2-propenamides as novel inhibitors of human histone deacetylase with in vivo antitumor activity: discovery of (2E)-N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]amino]methyl]phenyl]-2-propenamide (NVP-LAQ824). J Med Chem 46:4609–4624

    Article  CAS  PubMed  Google Scholar 

  • Rivieccio MA, Brochier C, Willis DE, Walker BA, D’Annibale MA, McLaughlin K, Siddiq A, Kozikowski AP, Jaffrey SR, Twiss JL, Ratan RR, Langley B (2009) HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci USA 106:19599–19604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roden DM (2004) Drug-induced prolongation of the QT interval. N Engl J Med 350:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowinsky EK, de Bono J, Deangelo DJ, van Oosterom A, Morganroth J, Laird GH, Dugan M, Scott JW, Ottmann OG (2005) Cardiac monitoring in Phase I trials of a novel histone deacetylase (HDAC) inhibitor LAQ824 in patients with advanced solid tumors and hematologic malignancies. J Clin Oncol 23(Suppl 16), (Abstract 3131)

  • Shah MH, Binkley P, Chan K, **ao J, Arbogast D, Collamore M, Farra Y, Young D, Grever M (2006) Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res 12:3997–4003

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Gao Z, Marks PA, Jiang X (2004) Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 101:18030–18035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spiekermann K, Bagrintseva K, Schwab R, Schmieja K, Hiddemann W (2003) Overexpression and constitutive activation of FLT3 induces STAT5 activation in primary acute myeloid leukemia blast cells. Clin Cancer Res 9:2140–2150

    CAS  PubMed  Google Scholar 

  • Stankova M, Besse L, Sedlarikova L, Vrabel D, Hajek R, Sevcikova S (2014) Cereblon—a new target of therapy in the treatment of multiple myeloma. Klinicka Onkol 27:326–330

    Article  CAS  Google Scholar 

  • Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3:650–665

    Article  CAS  PubMed  Google Scholar 

  • Strevel EL, Ing DJ, Siu LL (2007) Molecularly targeted oncology therapeutics and prolongation of the QT interval. J Clin Oncol 25:3362–3371

    Article  CAS  PubMed  Google Scholar 

  • Ververis K, Hiong A, Karagiannis TC, Licciardi PV (2013) Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biol Targets Ther 7:47–60

    CAS  Google Scholar 

  • Viviani SBV, Fasola C, Valagussa P, Gianni AM, Viviani S, Bonfante V, Fasola C, Valagussa P, Gianni AM (2008) Phase II study of the histone-deacetylase inhibitor ITF2357 in relapsed/refractory Hodgkin’s lymphoma patients. ASCO Meet Abstr 26:8532

    Google Scholar 

  • Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, Gilliland DG, Griffin JD (2002) Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 1:433–443

    Article  CAS  PubMed  Google Scholar 

  • Weisberg E, Catley L, Kujawa J, Atadja P, Remiszewski S, Fuerst P, Cavazza C, Anderson K, Griffin JD (2004) Histone deacetylase inhibitor NVP-LAQ824 has significant activity against myeloid leukemia cells in vitro and in vivo. Leukemia 18:1951–1963

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Nishiuchi R, Li Q, Kumar AR, Hudson WA, Kersey JH (2003) FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin Cancer Res 9:4483–4493

    CAS  PubMed  Google Scholar 

  • Zappasodi R, Cavanè A, Iorio MV, Tortoreto M, Guarnotta C, Ruggiero G, Piovan C, Magni M, Zaffaroni N, Tagliabue E, Croce CM, Zunino F, Gianni AM, Di Nicola M (2014) Pleiotropic antitumor effects of the pan-HDAC inhibitor ITF2357 against c-Myc-overexpressing human B-cell non-Hodgkin lymphomas. Int J Cancer 135:2034–2045

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    Article  CAS  PubMed  Google Scholar 

  • Zhang CZ, Zhang HT, Chen GG, Lai PB (2011) Trichostatin A sensitizes HBx-expressing liver cancer cells to etoposide treatment. Apoptosis Int J Program Cell Death 16:683–695

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks his family members for kee** patience while preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabir Ahmad Ganai.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest with any author or funding agency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganai, S.A. Strategy for enhancing the therapeutic efficacy of histone deacetylase inhibitor dacinostat: the novel paradigm to tackle monotonous cancer chemoresistance. Arch. Pharm. Res. (2015). https://doi.org/10.1007/s12272-015-0673-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12272-015-0673-9

Keywords

Navigation