Log in

Oncogenic challenges in stem cells and the link to cancer initiation

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Adult stem cells, which are characterized by self-renewal and multi-potency, are classified as specialized cell types, responsible for the regeneration of damaged tissues. There is growing evidence that senescence of stem cells (or stem cell aging) is closely associated with a variety of aging-related diseases such as tissue atrophy, degenerative diseases and onset of cancers. Alterations in the systemic environment during aging may trigger stress signaling in stem cells and reduce stem cell characteristics, resulting in loss of differentiation potential and defective self-renewal (referred to as mal-differentiation). Thus, it has been suggested that aging-related disorders such as retarded regeneration of damaged tissue and onset of cancer may result from the mal-differentiation of stem cells. In particular, many types of cancers such as leukemia, intestinal cancer, skin cancer and sarcoma have been shown to originate from adult stem cells after a variety of oncogenic challenges. This review summarizes recent studies on cancers originating from stem cells, demonstrating possible molecular mechanisms that govern the susceptibility of stem cells to oncogenic challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcantara Llaguno, S., Chen, J., Kwon, C., Jackson, E., Li, Y., Burns, D., Alvarez-Buylla, A., and Parada, L. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell, 15, 45–56 (2009).

    Article  PubMed  Google Scholar 

  • Amariglio, N., Hirshberg, A., Scheithauer, B. W., Cohen, Y., Loewenthal, R., Trakhtenbrot, L., Paz, N., Koren-Michowitz, M., Waldman, D., Leider-Trejo, L., Toren, A., Constantini, S., and Rechavi, G. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med., 6, e1000029 (2009).

    Article  PubMed  Google Scholar 

  • Asai, T., Liu, Y., Bae, N., and Nimer, S. D. The p53 tumor suppressor protein regulates hematopoietic stem cell fate. J. Cell Physiol., DOI 10.1002/jcp.22561 (2010).

  • Bachoo, R. M., Maher, E. A., Ligon, K. L., Sharpless, N. E., Chan, S. S., You, M. J., Tang, Y., Defrances, J., Stover, E., Weissleder, R., Rowitch, D. H., Louis, D. N., and Depinho, R. A. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell, 1, 269–277 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Barker, N., Ridgway, R. A., Van Es, J. H., Van De Wetering, M., Begthel, H., Van Den Born, M., Danenberg, E., Clarke, A. R., Sansom, O. J., and Clevers, H. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457, 608–611 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Barker, N., Huch, M., Kujala, P., Van De Wetering, M., Snippert, H. J., Van Es, J. H., Sato, T., Stange, D. E., Begthel, H., Van Den Born, M., Danenberg, E., Van Den Brink, S., Korving, J., Abo, A., Peters, P. J., Wright, N., Poulsom, R., and Clevers, H. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem. Cell, 6, 25–36 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Bienz, M. and Clevers, H., Linking colorectal cancer to Wnt signaling. Cell, 103, 311–320 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bleau, A. M., Hambardzumyan, D., Ozawa, T., Fomchenko, E. I., Huse, J. T., Brennan, C. W., and Holland, E. C., PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell, 4, 226–235 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Blum, B. and Benvenisty, N., The tumorigenicity of human embryonic stem cells. Adv. Cancer Res., 100, 133–158 (2008).

    Article  PubMed  Google Scholar 

  • Bonnet, D. and Dick, J. E., Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med., 3, 730–737 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Bouras, T., Pal, B., Vaillant, F., Harburg, G., Asselin-Labat, M. L., Oakes, S. R., Lindeman, G. J., and Visvader, J. E., Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell, 3, 429–441 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Bruggeman, S. W., Valk-Lingbeek, M. E., Van Der Stoop, P. P., Jacobs, J. J., Kieboom, K., Tanger, E., Hulsman, D., Leung, C., Arsenijevic, Y., Marino, S., and Van Lohuizen, M., Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev., 19, 1438–1443 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Bruggeman, S. W., Hulsman, D., Tanger, E., Buckle, T., Blom, M., Zevenhoven, J., Van Tellingen, O., and Van Lohuizen, M., Bmi1 controls tumor development in an Ink4a/Arfindependent manner in a mouse model for glioma. Cancer Cell, 12, 328–341 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Campisi, J., Cancer and ageing: rival demons? Nat. Rev. Cancer, 3, 339–349 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Cha, H., Lowe, J. M., Li, H., Lee, J. S., Belova, G. I., Bulavin, D. V., and Fornace, A. J., Jr., Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res., 70, 4112–4122 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Chen, W., Kumar, A. R., Hudson, W. A., Li, Q., Wu, B., Staggs, R. A., Lund, E. A., Sam, T. N., and Kersey, J. H., Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. Cancer Cell, 13, 432–440 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Colmegna, I., Diaz-Borjon, A., Fujii, H., Schaefer, L., Goronzy, J. J., and Weyand, C. M., Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis Rheum., 58, 990–1000 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Demidov, O. N., Timofeev, O., Lwin, H. N., Kek, C., Appella, E., and Bulavin, D. V., Wip1 phosphatase regulates p53- dependent apoptosis of stem cells and tumorigenesis in the mouse intestine. Cell Stem Cell, 1, 180–190 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Dexter, D. L. and Calabresi, P., Intraneoplastic diversity. Biochim. Biophys. Acta, 695, 97–112 (1982).

    PubMed  CAS  Google Scholar 

  • Fialkow, P. J., Denman, A. M., Jacobson, R. J., and Lowenthal, M. N., Chronic myelocytic leukemia. Origin of some lymphocytes from leukemic stem cells. J. Clin. Invest., 62, 815–823 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Fidler, I. J. and Poste, G., The biologic diversity of cancer metastases. Hosp. Pract. (Off Ed), 17, 57–64 (1982).

    CAS  Google Scholar 

  • Finkel, T., Serrano, M., and Blasco, M. A., The common biology of cancer and ageing. Nature, 448, 767–774 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Floor, S., Van Staveren, W. C., Larsimont, D., Dumont, J. E., and Maenhaut, C., Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: distinct, overlap** or same populations. Oncogene, 30, 4609–4621 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Gibson, P., Tong, Y., Robinson, G., Thompson, M. C., Currle, D. S., Eden, C., Kranenburg, T. A., Hogg, T., Poppleton, H., Martin, J., Finkelstein, D., Pounds, S., Weiss, A., Patay, Z., Scoggins, M., Ogg, R., Pei, Y., Yang, Z. J., Brun, S., Lee, Y., Zindy, F., Lindsey, J. C., Taketo, M. M., Boop, F. A., Sanford, R. A., Gajjar, A., Clifford, S. C., Roussel, M. F., Mckinnon, P. J., Gutmann, D. H., Ellison, D. W., Wechsler-Reya, R., and Gilbertson, R. J., Subtypes of medulloblastoma have distinct developmental origins. Nature, 468, 1095–1099 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Gidekel Friedlander, S. Y., Chu, G. C., Snyder, E. L., Girnius, N., Dibelius, G., Crowley, D., Vasile, E., Depinho, R. A., and Jacks, T., Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell, 16, 379–389 (2009).

    Article  PubMed  Google Scholar 

  • Goldstein, A. S., Huang, J., Guo, C., Garraway, I. P., and Witte, O. N., Identification of a cell of origin for human prostate cancer. Science, 329, 568–571 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Hahn, W. C. and Weinberg, R. A., Rules for making human tumor cells. N. Engl. J. Med., 347, 1593–1603 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Heppner, G. H., Tumor heterogeneity. Cancer Res., 44, 2259–2265 (1984).

    PubMed  CAS  Google Scholar 

  • Heuser, M., Yun, H., Berg, T., Yung, E., Argiropoulos, B., Kuchenbauer, F., Park, G., Hamwi, I., Palmqvist, L., Lai, C. K., Leung, M., Lin, G., Chaturvedi, A., Thakur, B. K., Iwasaki, M., Bilenky, M., Thiessen, N., Robertson, G., Hirst, M., Kent, D., Wilson, N. K., Gottgens, B., Eaves, C., Cleary, M. L., Marra, M., Ganser, A., and Humphries, R. K., Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex. Cancer Cell, 20, 39–52 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Holland, E. C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R. E., and Fuller, G. N., Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet., 25, 55–57 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Hope, K. J., **, L., and Dick, J. E., Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol., 5, 738–743 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Huntly, B. J., Shigematsu, H., Deguchi, K., Lee, B. H., Mizuno, S., Duclos, N., Rowan, R., Amaral, S., Curley, D., Williams, I. R., Akashi, K., and Gilliland, D. G., MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell, 6, 587–596 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Jacques, T. S., Swales, A., Brzozowski, M. J., Henriquez, N. V., Linehan, J. M., Mirzadeh, Z., C, O. M., Naumann, H., Alvarez-Buylla, A., and Brandner, S., Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. EMBO J., 29, 222–235 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Johnson, A. D., Pambuccian, S. E., Andrade, R. S., Dolan, M. M., and Aslan, D. L., Ewing sarcoma and primitive neuroectodermal tumor of the esophagus: report of a case and review of literature. Int. J. Surg. Pathol., 18, 388–393 (2010).

    PubMed  Google Scholar 

  • Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L., and Strasser, A., Tumor growth need not be driven by rare cancer stem cells. Science, 317, 337 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R. T., and Jacks, T., Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121, 823–835 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Korsten, H., Ziel-Van Der Made, A., Ma, X., Van Der Kwast, T., and Trapman, J., Accumulating progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a Pten knockout mouse prostate cancer model. PLoS ONE, 4, e5662 (2009).

    Article  PubMed  Google Scholar 

  • Kuhn, H., Dickinson-Anson, H., and Gage, F., Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci., 16, 2027–2033 (1996).

    PubMed  CAS  Google Scholar 

  • Lawson, D. A., Zong, Y., Memarzadeh, S., **n, L., Huang, J., and Witte, O. N., Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc. Natl. Acad. Sci. U. S. A., 107, 2610–2615 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Le Guezennec, X. and Bulavin, D. V., WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem. Sci., 35, 109–114 (2009).

    Article  PubMed  Google Scholar 

  • Lee, J. S., Lee, M. O., Moon, B. H., Shim, S. H., Fornace, A. J., Jr., and Cha, H. J., Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways. Stem Cells, 27, 1963–1975 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. S., Lee, H. J., Moon, B. H., Song, S. H., Lee, M. O., Shim, S. H., Kim, H. S., Lee, M. C., Kwon, J. T., Fornace, A. J., Jr., Kim, S. U., and Cha, H. J., Generation of cancerous neural stem cells forming glial tumor by oncogenic stimulation. Stem Cell Rev., DOI 10.1007/s12015-011-9280-4 (2011a).

  • Lee, M. O., Lee, H. J., Kim, M. A., Kim, E. K., Lee, J. H., Heo, J. H., Lee, S. H., Cho, S. H., Fornace, A. J., Jr., Jeong, H. C., and Cha, H. J., p16Ink4a suppression of lung adenocarcinoma by Bmi-1 in the presence of p38 activation. J. Thorac. Oncol., 6, 423–431 (2011b).

    Article  PubMed  Google Scholar 

  • Li, L. and Neaves, W. B., Normal stem cells and cancer stem cells: the niche matters. Cancer Res., 66, 4553–4557 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., Asselin-Labat, M. L., Gyorki, D. E., Ward, T., Partanen, A., Feleppa, F., Huschtscha, L. I., Thorne, H. J., Kconfab, Fox, S. B., Yan, M., French, J. D., Brown, M. A., Smyth, G. K., Visvader, J. E., and Lindeman, G. J., Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat. Med., 15, 907–913 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Lin, T., Chao, C., Saito, S., Mazur, S. J., Murphy, M. E., Appella, E., and Xu, Y., p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol., 7, 165–171 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Lindberg, N., Kastemar, M., Olofsson, T., Smits, A., and Uhrbom, L., Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene, 28, 2266–2275 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Ma, X., Ziel-Van Der Made, A. C., Autar, B., Van Der Korput, H. A., Vermeij, M., Van Duijn, P., Cleutjens, K. B., De Krijger, R., Krimpenfort, P., Berns, A., Van Der Kwast, T. H., and Trapman, J., Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Cancer Res., 65, 5730–5739 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., and Weinberg, R. A., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Marumoto, T., Tashiro, A., Friedmann-Morvinski, D., Scadeng, M., Soda, Y., Gage, F. H., and Verma, I. M., Development of a novel mouse glioma model using lentiviral vectors. Nat. Med., 15, 110–116 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Meletis, K., Wirta, V., Hede, S. M., Nister, M., Lundeberg, J., and Frisen, J., p53 suppresses the self-renewal of adult neural stem cells. Development, 133, 363–369 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa, Y., Okita, H., Nakaijima, H., Horiuchi, Y., Sato, B., Taguchi, T., Toyoda, M., Katagiri, Y. U., Fujimoto, J., Hata, J., Umezawa, A., and Kiyokawa, N., Inducible expression of chimeric EWS/ETS proteins confers Ewing’s family tumor-like phenotypes to human mesenchymal progenitor cells. Mol. Cell Biol., 28, 2125–2137 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Molofsky, A., Pardal, R., Iwashita, T., Park, I., Clarke, M., and Morrison, S., Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 425, 962–967 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Molofsky, A., He, S., Bydon, M., Morrison, S., and Pardal, R., Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev., 19, 1432–1437 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Molofsky, A., Slutsky, S., Joseph, N., He, S., Pardal, R., Krishnamurthy, J., Sharpless, N., and Morrison, S., Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature, 443, 448–452 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Molyneux, G., Geyer, F. C., Magnay, F. A., Mccarthy, A., Kendrick, H., Natrajan, R., Mackay, A., Grigoriadis, A., Tutt, A., Ashworth, A., Reis-Filho, J. S., and Smalley, M. J., BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell, 7, 403–417 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Moon, R. T. and Miller, J. R., The APC tumor suppressor protein in development and cancer. Trends Genet., 13, 256–258 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Mulholland, D. J., **n, L., Morim, A., Lawson, D., Witte, O., and Wu, H., Lin-Sca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res., 69, 8555–8562 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Oliveras, A., Soler, M. J., Martinez-Estrada, O. M., Vazquez, S., Marco-Feliu, D., Vila, J. S., Vilaro, S., and Lloveras, J., Endothelial progenitor cells are reduced in refractory hypertension. J. Hum. Hypertens, 22, 183–190 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., Morrison, S. J., and Clarke, M. F., Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423, 302–305 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Polyak, K. and Weinberg, R. A., Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer, 9, 265–273 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Quintana, E., Shackleton, M., Sabel, M. S., Fullen, D. R., Johnson, T. M., and Morrison, S. J., Efficient tumour formation by single human melanoma cells. Nature, 456, 593–598 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Rando, T. A., The immortal strand hypothesis: segregation and reconstruction. Cell, 129, 1239–1243 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Rich, J. N., Guo, C., Mclendon, R. E., Bigner, D. D., Wang, X. F., and Counter, C. M., A genetically tractable model of human glioma formation. Cancer Res., 61, 3556–3560 (2001).

    PubMed  CAS  Google Scholar 

  • Riggi, N., Cironi, L., Provero, P., Suva, M. L., Kaloulis, K., Garcia-Echeverria, C., Hoffmann, F., Trumpp, A., and Stamenkovic, I., Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res., 65, 11459–11468 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Riggi, N., Suva, M. L., De Vito, C., Provero, P., Stehle, J. C., Baumer, K., Cironi, L., Janiszewska, M., Petricevic, T., Suva, D., Tercier, S., Joseph, J. M., Guillou, L., and Stamenkovic, I., EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev., 24, 916–932 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Riis, M. L., Luders, T., Nesbakken, A. J., Vollan, H. S., Kristensen, V., and Bukholm, I. R., Expression of BMI-1 and Mel-18 in breast tissue-a diagnostic marker in patients with breast cancer. BMC Cancer, 10, 686 (2010).

    Article  PubMed  Google Scholar 

  • Rossi, D. J., Jamieson, C. H., and Weissman, I. L., Stems cells and the pathways to aging and cancer. Cell, 132, 681–696 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Rosso, A., Balsamo, A., Gambino, R., Dentelli, P., Falcioni, R., Cassader, M., Pegoraro, L., Pagano, G., and Brizzi, M. F., p53 Mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes. J. Biol. Chem., 281, 4339–4347 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Ruzankina, Y., Pinzon-Guzman, C., Asare, A., Ong, T., Pontano, L., Cotsarelis, G., Zediak, V. P., Velez, M., Bhandoola, A., and Brown, E. J., Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell, 1, 113–126 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Sahin, E. and Depinho, R. A., Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature, 464, 520–528 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Sanai, N., Alvarez-Buylla, A., and Berger, M. S., Neural stem cells and the origin of gliomas. N. Engl. J. Med., 353, 811–822 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Sangiorgi, E. and Capecchi, M. R., Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet., 40, 915–920 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Scadden, D. T., The stem-cell niche as an entity of action. Nature, 441, 1075–1079 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Schuller, U., Heine, V. M., Mao, J., Kho, A. T., Dillon, A. K., Han, Y. G., Huillard, E., Sun, T., Ligon, A. H., Qian, Y., Ma, Q., Alvarez-Buylla, A., Mcmahon, A. P., Rowitch, D. H., and Ligon, K. L., Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell, 14, 123–134 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Sharpless, N. and Depinho, R., How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell Biol., 8, 703–713 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C. J., The INK4a/ARF network in tumour suppression. Nat. Rev. Mol. Cell Biol., 2, 731–737 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Shibata, K. R., Aoyama, T., Shima, Y., Fukiage, K., Otsuka, S., Furu, M., Kohno, Y., Ito, K., Fujibayashi, S., Neo, M., Nakayama, T., Nakamura, T., and Toguchida, J., Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells, 25, 2371–2382 (2007).

    Article  PubMed  CAS  Google Scholar 

  • So, C. W., Karsunky, H., Passegue, E., Cozzio, A., Weissman, I. L., and Cleary, M. L., MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell, 3, 161–171 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Sutter, R., Shakhova, O., Bhagat, H., Behesti, H., Sutter, C., Penkar, S., Santuccione, A., Bernays, R., Heppner, F. L., Schuller, U., Grotzer, M., Moch, H., Schraml, P., and Marino, S., Cerebellar stem cells act as medulloblastomainitiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas. Oncogene, 29, 1845–1856 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Tirode, F., Laud-Duval, K., Prieur, A., Delorme, B., Charbord, P., and Delattre, O., Mesenchymal stem cell features of Ewing tumors. Cancer Cell, 11, 421–429 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen, L., Sprick, M. R., Kemper, K., Stassi, G., and Medema, J. P., Cancer stem cells-old concepts, new insights. Cell Death Differ., 15, 947–958 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Villeda, S. A., Luo, J., Mosher, K. I., Zou, B., Britschgi, M., Bieri, G., Stan, T. M., Fainberg, N., Ding, Z., Eggel, A., Lucin, K. M., Czirr, E., Park, J. S., Couillard-Despres, S., Aigner, L., Li, G., Peskind, E. R., Kaye, J. A., Quinn, J. F., Galasko, D. R., **e, X. S., Rando, T. A., and Wyss-Coray, T., The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477, 90–94 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Visvader, J. E. and Lindeman, G. J., Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer, 8, 755–768 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Vonlanthen, S., Heighway, J., Altermatt, H. J., Gugger, M., Kappeler, A., Borner, M. M., Van Lohuizen, M., and Betticher, D. C., The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br. J. Cancer, 84, 1372–1376 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Kruithof-De Julio, M., Economides, K. D., Walker, D., Yu, H., Halili, M. V., Hu, Y. P., Price, S. M., Abate-Shen, C., and Shen, M. M., A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature, 461, 495–500 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Warner, J., Wang, J., Hope, K., **, L., and Dick, J., Concepts of human leukemic development. Oncogene, 23, 7164–7177 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Wong, E., Le Guezennec, X., Demidov, O., Marshall, N., Wang, S., Krishnamurthy, J., Sharpless, N., Dunn, N., and Bulavin, D., p38MAPK controls expression of multiple cell cycle inhibitors and islet proliferation with advancing age. Dev. Cell, 17, 142–149 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A., and Kosik, K. S., MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137, 647–658 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Youssef, K. K., Van Keymeulen, A., Lapouge, G., Beck, B., Michaux, C., Achouri, Y., Sotiropoulou, P. A., and Blanpain, C., Identification of the cell lineage at the origin of basal cell carcinoma. Nat. Cell Biol., 12, 299–305 (2010).

    PubMed  CAS  Google Scholar 

  • Zhu, L., Gibson, P., Currle, D. S., Tong, Y., Richardson, R. J., Bayazitov, I. T., Poppleton, H., Zakharenko, S., Ellison, D. W., and Gilbertson, R. J., Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature, 457, 603–607 (2009a).

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Zhang, C., Lu, L., Demidov, O., Sun, L., Yang, L., Bulavin, D., and **ao, Z., Wip1 regulates the generation of new neural cells in the adult olfactory bulb through p53- dependent cell cycle control. Stem Cells, 27, 1433–1442 (2009b).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuk-** Cha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Bae, GY., Lee, MO. et al. Oncogenic challenges in stem cells and the link to cancer initiation. Arch. Pharm. Res. 35, 235–244 (2012). https://doi.org/10.1007/s12272-012-0204-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0204-x

Key words

Navigation