Log in

Eicosapentaenoic Acid Preserves Mitochondrial Quality and Attenuates Cardiac Remodeling After Myocardial Infarction in Rats

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Eicosapentaenoic acid (EPA) reduces the risk of ischemic heart diseases and is a component of mitochondria. We herein investigated whether dietary EPA mediated mitochondrial fatty acid compositions, dynamics, and functions, resulting in the attenuation of cardiac remodeling after myocardial infarction (MI). The coronary artery of male rats was ligated to induce MI, and they were then treated with or without EPA (1000 mg/kg/day) for 12 weeks. The EPA treatment improved left ventricular systolic function and increased the mitochondrial content of EPA in the non-infarct region 12 weeks after MI. The content of ATP and mitochondrial complex II, III, and IV activities decreased after MI but were maintained by the EPA treatment in association with the preservation of optic atrophy 1, a mitochondrial fusion protein. The present results suggest that dietary EPA increased the mitochondrial content of EPA and preserved the expression of mitochondrial fusion proteins and energy metabolism, which attenuated left ventricular remodeling after MI.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the present results are available upon request from the corresponding author.

Abbreviations

AA:

Arachidonic acid

ALA:

α-Linolenic acid

ATP:

Adenosine triphosphate

BSA:

Bovine serum albumin

BW:

Body weight

CHF:

Chronic heart failure

DGLA:

Dihomo-γ-linolenic acid

DHA:

Docosapentaenoic acid

Drp-1:

Dynamin-related protein 1

EGTA:

Ethylene glycol-bis(beta-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

EPA:

Eicosapentaenoic acid

GC-MS:

Gas chromatography–mass spectrometry

GLA:

γ-Linolenic acid

HE:

Hematoxylin-eosin

HW:

Heart weight

LV:

Left ventricular

LVEDd:

Left ventricular end-diastolic diameter

LVEDs:

Left ventricular end-systolic diameter

LVFS:

Left ventricular fractional shortening

LVW:

Left ventricular weight

LW:

Lung weight

MI:

Myocardial infarction

MOPS:

Morpholinepropanesulfonic acid

OPA1:

Optic atrophy 1

PUFA:

Polyunsaturated fatty acids

RBC:

Red blood cell

TA:

Tridecanoic acid

TG:

Triglyceride

TTC:

Triphenyl tetrazolium chloride

References

  1. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8.

    CAS  PubMed  Google Scholar 

  2. Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223–30.

    PubMed  Google Scholar 

  3. GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet. 1999;354:447–55.

    Google Scholar 

  4. Heydari B, Abdullah S, Pottala JV, et al. Effect of omega-3 acid ethyl esters on left ventricular remodeling after acute myocardial infarction: the OMEGA-REMODEL randomized clinical trial. Circulation. 2016;134:378–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nodari S, Triggiani M, Campia U, et al. Effects of n-3 polyunsaturated fatty acids on left ventricular function and functional capacity in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2011;57:870–9.

    CAS  PubMed  Google Scholar 

  6. Ajith TA, Jayakumar TG. Omega-3 fatty acids in coronary heart disease: recent updates and future perspectives. Clin Exp Pharmacol Physiol. 2019;46:11–8.

    CAS  PubMed  Google Scholar 

  7. Rauch B, Schiele R, Schneider S, et al. OMEGA, a randomized, placebo-controlled trial to test the effect of highly purified omega-3 fatty acids on top of modern guideline-adjusted therapy after myocardial infarction. Circulation. 2010;122:2152–9.

    CAS  PubMed  Google Scholar 

  8. Kromhout D, Giltay EJ, Geleijnse JM, Alpha Omega Trial Group. n-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010;363:2015–26.

    CAS  PubMed  Google Scholar 

  9. Trial Investigators ORIGIN, Bosch J, Gerstein HC, et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367:309–18.

    Google Scholar 

  10. Pepe S, McLennan PL. Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function. Circulation. 2002;105:2303–8.

    CAS  PubMed  Google Scholar 

  11. Takamura M, Kurokawa K, Ootsuji H, et al. Long-term administration of eicosapentaenoic acid improves post-myocardial infarction cardiac remodeling in mice by regulating macrophage polarization. J Am Heart Assoc. 2017;6(2):e004560.

    PubMed  PubMed Central  Google Scholar 

  12. Duda MK, O’Shea KM, Lei B, et al. Dietary supplementation with omega-3 PUFA increases adiponectin and attenuates ventricular remodeling and dysfunction with pressure overload. Cardiovasc Res. 2007;76:303–10.

    CAS  PubMed  Google Scholar 

  13. Duda MK, O’Shea KM, Tintinu A, et al. Fish oil, but not flaxseed oil, decreases inflammation and prevents pressure overload-induced cardiac dysfunction. Cardiovasc Res. 2009;81:319–27.

    CAS  PubMed  Google Scholar 

  14. Chen J, Shearer GC, Chen Q, et al. Omega-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts. Circulation. 2011;123:584–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Q, Yu Q, Na R, Liu B. Omega-3 polyunsaturated fatty acids prevent murine dilated cardiomyopathy by reducing oxidative stress and cardiomyocyte apoptosis. Exp Ther Med. 2017;14:6152–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao JY, Yasuda S, Tsuburaya R, et al. Long-term treatment with eicosapentaenoic acid ameliorates myocardial ischemia-reperfusion injury in pigs in vivo. -Involvement of Rho-kinase pathway inhibition-. Circ J. 2011;75:1843–51.

    CAS  PubMed  Google Scholar 

  17. Anderson EJ, Thayne K, Harris M, et al. Aldehyde stress and up-regulation of Nrf2-mediated antioxidant systems accompany functional adaptations in cardiac mitochondria from mice fed n-3 polyunsaturated fatty acids. Biochem J. 2012;441:359–66.

    CAS  PubMed  Google Scholar 

  18. Ogita H, Node K, Asanuma H, et al. Eicosapentaenoic acid reduces myocardial injury induced by ischemia and reperfusion in rabbit hearts. J Cardiovasc Pharmacol. 2003;41:964–9.

    CAS  PubMed  Google Scholar 

  19. Monteiro JP, Oliveira PJ, Jurado AS. Mitochondrial membrane lipid remodeling in pathophysiology: a new target for diet and therapeutic interventions. Prog Lipid Res. 2013;52:513–28.

    CAS  PubMed  Google Scholar 

  20. Sharov VG, Todor AV, Silverman N, et al. Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol. 2000;32:2361–7.

    CAS  PubMed  Google Scholar 

  21. Rosca MG, Vazquez EJ, Kerner J, et al. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res. 2008;80:30–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Youle RJ. van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kasahara A, Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol. 2014;24:761–70.

    CAS  PubMed  Google Scholar 

  24. Griparic L, van der Bliek AM. The many shapes of mitochondrial membranes. Traffic. 2001;2:235–44.

    CAS  PubMed  Google Scholar 

  25. Ong SB, Subrayan S, Lim SY, et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121:2012–22.

    CAS  PubMed  Google Scholar 

  26. Li XX, Tsoi B, Li YF, et al. Cardiolipin and its different properties in mitophagy and apoptosis. J Histochem Cytochem. 2015;63:301–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ito S, Sano Y, Nagasawa K, et al. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome. Obes Sci Pract. 2016;2:318–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kobara M, Tatsumi T, Matoba S, et al. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts. J Mol Cell Cardiol. 1996;28:417–28.

    CAS  PubMed  Google Scholar 

  29. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27–31.

    PubMed  PubMed Central  Google Scholar 

  30. Higashihara E, Nutahara E, Horie S, et al. The effect of eicosapentaenoic acid on renal function and volume in patients with ADPKD. Nephrol Dial Transplant. 2008;23:2847–52.

    CAS  PubMed  Google Scholar 

  31. Zeghichi-Hamri S, de Lorgeril M, Salen P, et al. Protective effect of dietary n-3 polyunsaturated fatty acids on myocardial resistance to ischemia-reperfusion injury in rats. Nutr Res. 2010;30:849–57.

    CAS  PubMed  Google Scholar 

  32. Birk AV, Chao WM, Bracken C, et al. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br J Pharmacol. 2014;171:2017–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. McMillin JB, Bick RJ, Benedict CR. Influence of dietary fish oil on mitochondrial function and response to ischemia. Am J Physiol. 1992;263:H1479–85.

    CAS  PubMed  Google Scholar 

  34. Johnson ML, Lalia AZ, Dasari S, et al. Eicosapentaenoic acid but not docosahexaenoic acid restores skeletal muscle mitochondrial oxidative capacity in old mice. Aging Cell. 2015;14:734–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun R, Wang X, Liu Y, **a M. Dietary supplementation with fish oil alters the expression levels of proteins governing mitochondrial dynamics and prevents high-fat diet-induced endothelial dysfunction. Br J Nutr. 2014;112:145–53.

    CAS  PubMed  Google Scholar 

  36. Dorn GW 2nd. Mitochondrial dynamics in heart disease. Biochim Biophys Acta. 2013;1833:233–41.

    CAS  PubMed  Google Scholar 

  37. Jiang HK, Wang YH, Sun L, et al. Aerobic interval training attenuates mitochondrial dysfunction in rats post-myocardial infarction: roles of mitochondrial network dynamics. Int J Mol Sci. 2014;15:5304–22.

    PubMed  PubMed Central  Google Scholar 

  38. Wang F, Yang J, Sun J, et al. Testosterone replacement attenuates mitochondrial damage in a rat model of myocardial infarction. J Endocrinol. 2015;225:101–11.

    CAS  PubMed  Google Scholar 

  39. Piquereau J, Caffin F, Novotova M, et al. Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc Res. 2012;94:408–17.

    CAS  PubMed  Google Scholar 

  40. Varanita T, Soriano ME, Romanello V, et al. The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab. 2015;21:834–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA. 2004;101:15927–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shysh AM, Nagibin VS, Kaplinskii SP, Dosenko VE. N-3 long chain polyunsaturated fatty acids increase the expression of PPARγ-target genes and resistance of isolated heart and cultured cardiomyocytes to ischemic injury. Pharmacol Rep. 2016;68:1133–9.

    CAS  PubMed  Google Scholar 

  43. Anusree SS, Nisha VM, Priyanka A. Raghu KG (2015) Insulin resistance by TNF-α is associated with mitochondrial dysfunction in 3T3-L1 adipocytes and is ameliorated by punicic acid, a PPARγ agonist. Mol Cell Endocrinol. 2015;413:120–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mochida Pharmaceutical Co., Ltd. (Tokyo, Japan) for supplying EPA.

Funding

This work was supported, in part, by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 24591102.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Miyuki Kobara designed and performed the experiments and wrote the first draft of the manuscript. Tatsuya Shiraishi performed the experiments and data analysis. Kazuki Noda performed the GC–MS measurement and analysis. Hiroe Toba performed the data analysis. Tetsuo Nakata contributed to the conception of the study and drafting of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Miyuki Kobara.

Ethics declarations

Ethics Approval

All procedures conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health. The protocol was approved by the Bioethics Committee of Kyoto Pharmaceutical University.

Consent to Participate

No human studies were performed by the authors for this article.

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Guo** Li oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 27.0 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobara, M., Shiraishi, T., Noda, K. et al. Eicosapentaenoic Acid Preserves Mitochondrial Quality and Attenuates Cardiac Remodeling After Myocardial Infarction in Rats. J. of Cardiovasc. Trans. Res. 16, 816–827 (2023). https://doi.org/10.1007/s12265-023-10363-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10363-z

Keywords

Navigation