Log in

Suppression of the Inhibitory Effect of circ_0036176-Translated Myo9a-208 on Cardiac Fibroblast Proliferation by miR-218-5p

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Increasing evidence has shown that circular RNAs (circRNAs) participate in the process of cardiac remodeling. CircRNA circ_0036176 originating from the back-splicing of exon 2 to exon4 of myosin IXA (Myo9a) gene was shown to be increased in the myocardium of patients with heart failure (HF) and riched in exosomes from human AC16 cardiomyocytes with overexpression of circ_0036176. Proliferation activity was inhibited in mCFs subjected to exosomal circ_0036176 treatment and in mCFs with overexpression of circ_0036176. Interestingly, circ_0036176 contains an IRES element and an ORF of 627 nt encoding a 208-amino acid protein (termed as Myo9a-208). Myo9a-208 was shown to mediate the inhibitory effect of circ_0036176 on CFs proliferation, and miR-218-5p could inhibit Myo9a-208 expression by binding to circ_0036176, resulting in abolishing the effect of circ_0036176 on inactivating cyclin/Rb signal and suppressing CFs proliferation. Our findings suggest that circ_0036176 inhibits mCFs proliferation by translating Myo9a-208 protein to suppress cyclin/Rb pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ang-II:

Angiotensin-II

CCK8:

Cell Counting Kit-8

CCND1:

Cyclin D1

CCNE1:

Cyclin E1

CDK6:

Cyclin kinase 6

CDK9:

Cyclin kinase 9

circRNAs:

Circular RNAs

CVF:

Collagen volume fraction

ECM:

Extracellular matrix

EdU:

5-Ethynyl-2′-deoxyuridine

FL:

Firefly luciferase

HAFs:

Human atrial fibroblasts

HF:

Heart failure

IRES:

Internal ribosome entry sites

mCFs:

Mouse cardiac fibroblasts

MIRESs:

M6A-induced ribosome engagement sites

miR:

MicroRNA

MYO9A:

Myosin IXA

ORF:

Open reading frame

p-HH3:

Phosphorylated histone H3

p-Rb1:

Phosphorylated RB transcriptional corepressor 1

RL:

Renilla luciferase

RT-qPCR:

Quantitative reverse-transcription PCR

TEM:

Transmission electron microscope

3′-UTR:

3′ Untranslated region

References

  1. Frangogiannis, N. G. (2019). Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Molecular Aspects of Medicine, 65, 70–99.

    Article  CAS  PubMed  Google Scholar 

  2. Berk, B. C., Fujiwara, K., & Lehoux, S. (2007). ECM remodeling in hypertensive heart disease. The Journal of Clinical Investigation, 117, 568–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Krenning, G., Zeisberg, E. M., & Kalluri, R. (2010). The origin of fibroblasts and mechanism of cardiac fibrosis. Journal of Cellular Physiology, 225, 631–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Souders, C. A., Bowers, S. L. K., & Baudino, T. A. (2009). Cardiac fibroblast the renaissance cell. Circulation Research, 105, 1164–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eghbali, M., Blumenfeld, O. O., Seifter, S., Buttrick, P. M., Leinwand, L. A., Robinson, T. F., et al. (1989). Localization of types I, III and IV collagen mRNAs in rat heart cells by in situ hybridization. Journal of Molecular and Cellular Cardiology, 21, 103–113.

    Article  CAS  PubMed  Google Scholar 

  6. Brown, R. D., Ambler, S. K., Mitchell, M. D., & Long, C. S. (2005). The cardiac fibroblast: Therapeutic target in myocardial remodeling and failure. Annual Review of Pharmacology and Toxicology, 45, 657–687.

    Article  CAS  PubMed  Google Scholar 

  7. Spinale, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiological Reviews, 87, 1285–1342.

    Article  CAS  PubMed  Google Scholar 

  8. Turner, N. A. (2011). Therapeutic regulation of cardiac fibroblast function: Targeting stress-activated protein kinase pathways. Future Cardiology, 7, 673–691.

    Article  CAS  PubMed  Google Scholar 

  9. Cleutjens, J. P., Verluyten, M. J., Smiths, J. F., & Daemen, M. J. (1995). Collagen remodeling after myocardial infarction in the rat heart. American Journal of Pathology, 147, 325–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ashizawa, N., Graf, K., Do, Y. S., Nunohiro, T., Giachelli, C. M., Meehan, W. P., et al. (1996). Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis and collagen gel contraction. The Journal of Clinical Investigation, 98, 2218–2227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Komatsubara, I., Murakami, T., Kusachi, S., Nakamura, K., Hirohata, S., Hayashi, J., et al. (2003). Spatially and temporally different expression of osteonectin and osteopontin in the infarct zone of experimentally induced myocardial infarction in rats. Cardiovascular Pathology, 12, 186–194.

    Article  CAS  PubMed  Google Scholar 

  12. Cleutjens, J. P., Kandala, J. C., Guarda, E., Guntaka, R. V., & Weber, K. T. (1995). Regulation of collagen degradation in the rat myocardium after infarction. Journal of Molecular and Cellular Cardiology, 27, 1281–1292.

    Article  CAS  PubMed  Google Scholar 

  13. Li, B., Li, Y., Hu, L., Liu, Y., Zhou, Q., Wang, M., et al. (2020). Role of circular RNAs in the pathogenesis of cardiovascular disease. Journal of Cardiovascular Translational Research, 13, 572–583.

    Article  PubMed  Google Scholar 

  14. Creemers, E. E., & van Rooij, E. (2016). Function and therapeutic potential of noncoding RNAs in cardiac fibrosis. Circulation Research, 118, 108–118.

    Article  CAS  PubMed  Google Scholar 

  15. Yousefi, F., & Soltani, B. M. (2021). Circular RNAs as potential theranostics in the cardiac fibrosis. Heart Failure Reviews, 26, 195–203.

    Article  PubMed  Google Scholar 

  16. Huang, C., & Shan, G. (2015). What happens at or after transcription: Insights into circRNA biogenesis and function. Transcription, 6, 61–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., et al. (2015). Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Research, 25, 981–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, C., Huo, S. T., Wu, Z., Chen, L., Wen, C., Chen, H., et al. (2020). Rapid development of targeting circRNAs in cardiovascular diseases. Molecular Therapy Nucleic Acids, 21, 568–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang, C. M., Zhang, M., Huang, L., Hu, Z. Q., Zhu, J. N., **ao, Z., et al. (2017). CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Science and Reports, 7, 40342.

    Article  CAS  Google Scholar 

  20. Wu, N., Xu, J., Du, W. W., Li, X., Awan, F. M., Li, F., et al. (2021). YAP circular RNA, circYap, attenuates cardiac fibrosis via binding with tropomyosin-4 and gamma-actin decreasing actin polymerization. Molecular Therapy, 29, 1138–1150.

    Article  CAS  PubMed  Google Scholar 

  21. Wu, N., Li, C., Xu, B., **ang, Y., Jia, X., Yuan, Z., et al. (2021). Circular RNA mmu_circ_0005019 inhibits fibrosis of cardiac fibroblasts and reverses electrical remodeling of cardiomyocytes. BMC Cardiovascular Disorders, 21, 308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang, K., Long, B., Liu, F., Wang, J. X., Liu, C. Y., Zhao, B., et al. (2016). A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. European Heart Journal, 37, 2602–2611.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, K., Gan, T. Y., Li, N., Liu, C. Y., Zhou, L. Y., Gao, J. N., et al. (2017). Circular RNA mediates cardiomyocyte death via miRNA dependent upregulation of MTP18 expression. Cell Death and Differentiation, 24, 1111–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du, W. W., Xu, J., Yang, W., Wu, N., Li, F., Zhou, L., et al. (2021). A neuroligin isoform translated by circNlgn contributes to cardiac remodeling. Circulation Research, 129, 568–582.

    Article  CAS  PubMed  Google Scholar 

  25. Yang, Z., **ao, Z., Guo, H., Fang, X., Liang, J., Zhu, J., et al. (2019). Novel role of the clustered miR-23b-3p and miR-27b-3p in enhanced expression of fibrosis-associated genes by targeting TGFBR3 in atrial fibroblasts. Journal of Cellular and Molecular Medicine, 23, 3246–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeng, N., Huang, Y. Q., Yan, Y. M., Hu, Z. Q., Zhang, Z., Feng, J. X., et al. (2021). Diverging targets mediate the pathological role of miR-199a-5p and miR-199a-3p by promoting cardiac hypertrophy and fibrosis. Molecular Therapy Nucleic Acids, 26, 1035–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuan, W. W., Tang, C. M., Zhu, W. S., Zhu, J. N., Lin, Q. X., Fu, Y. H., et al. (2016). CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy. Molecular and Cellular Biochemistry, 412, 289–296.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, W. S., Tang, C. M., **ao, Z., Zhu, J. N., Lin, Q. X., Fu, Y. H., et al. (2016). Targeting EZH1 and EZH2 contributes to the suppression of fibrosis-associated genes by miR-214-3p in cardiac myofibroblasts. Oncotarget, 7, 78331–78342.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tang, C. M., Liu, F. Z., Zhu, J. N., Fu, Y. H., Lin, Q. X., Deng, C. Y., et al. (2016). Myocyte-specific enhancer factor 2C: A novel target gene of miR-214-3p in suppressing angiotensin II-induced cardiomyocyte hypertrophy. Science and Reports, 6, 36146.

    Article  CAS  Google Scholar 

  30. Behbehani, G. K. (2018). Cell cycle analysis by mass cytometry. Methods in Molecular Biology, 1686, 105–124.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Y., Liu, J., Ma, J., Sun, T., Zhou, Q., Wang, W., et al. (2019). Exosomal circRNAs: Biogenesis, effect and application in human diseases. Molecular Cancer, 18, 116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Henning, R. J. (2021). Cardiovascular exosomes and microRNAs in cardiovascular physiology and pathophysiology. Journal of Cardiovascular Translational Research, 14, 195–212.

    Article  PubMed  Google Scholar 

  33. Shi, Y., Jia, X., & Xu, J. (2020). The new function of circRNA: Translation. Clinical and Translational Oncology, 22, 2162–2169.

    Article  CAS  PubMed  Google Scholar 

  34. Prats, A. C., David, F., Diallo, L. H., Roussel, E., Tatin, F., Garmy-Susini, B., et al. (2020). Circular RNA, the key for translation. International Journal of Molecular Sciences, 21, 8591.

    Article  CAS  PubMed Central  Google Scholar 

  35. Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20, 675–691.

    Article  CAS  PubMed  Google Scholar 

  36. Miska, E. A. (2005). How microRNAs control cell division, differentiation and death. Current Opinion in Genetics & Development, 15, 563–568.

    Article  CAS  Google Scholar 

  37. Ke, X., Yang, R., Wu, F., Wang, X., Liang, J., Hu, X., et al. (2021). Exosomal miR-218-5p/miR-363-3p from endothelial progenitor cells ameliorate myocardial infarction by targeting the p53/JMY signaling pathway. Oxidative Medicine and Cellular Longevity, 2021, 5529430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chen, M., Li, M., Zhang, N., Sun, W., Wang, H., & Wei, W. (2021). Mechanism of miR-218-5p in autophagy, apoptosis and oxidative stress in rheumatoid arthritis synovial fibroblasts is mediated by KLF9 and JAK/STAT3 pathways. Journal of Investigative Medicine, 69, 824–832.

    Article  PubMed Central  Google Scholar 

  39. Meinsohn, M. C., Morin, F., Bertolin, K., Duggavathi, R., Schoonjans, K., & Murphy, B. D. (2017). The orphan nuclear receptor liver homolog receptor-1 (Nr5a2) regulates ovarian granulosa cell proliferation. Journal of the Endocrine Society, 2, 24–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sobecki, M., Mrouj, K., Colinge, J., Gerbe, F., Jay, P., Krasinska, L., et al. (2017). Cell-cycle regulation accounts for variability in Ki-67 expression levels. Cancer Research, 77, 2722–2734.

    Article  CAS  PubMed  Google Scholar 

  41. Shao, Y. Y., Li, Y. S., Hsu, H. W., Lin, H., Wang, H. Y., Wo, R. R., et al. (2019). Potent activity of composite cyclin dependent kinase inhibition against hepatocellular carcinoma. Cancers (Basel), 11, 1433.

    Article  CAS  Google Scholar 

  42. Saavedra, H. I., Wu, L., de Bruin, A., Timmers, C., Rosol, T. J., Weinstein, M., et al. (2002). Specificity of E2F1, E2F2, and E2F3 in mediating phenotypes induced by loss of Rb. Cell Growth & Differentiation, 13, 215–225.

    CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (82070254 and 81770264 to Z.-X. Shan), a High-level Hospital Construction Project of Guangdong Provincial People’s Hospital (DFJH201902 to Z.-X. Shan), Guangdong Basic and Applied Basic Research Foundation (2021A1515011554 to X.-H. Fang), and Guangzhou Science and Technology Program project (202002030013 to X.-H. Fang, 202002030039 to H.-M. Guo).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: **g Guo and Zhi-**n Shan. Performed the experiments: **g Guo, Li-Wen Chen, Zhi-Qi Huang, Ji-Shen Guo, Yue Shan, and Jie-Ning Zhu. Managed data: Zhi-Qi Huang and Hui Li. Analyzed the data: Hui-Ming Guo and Zhi-**n Shan. Contributed reagents/materials/analysis tools: Yu-Min Yan, Ze-Run Chen, and **an-Hong Fang. Funding acquisition: **an-Hong Fang, Hui-Ming Guo, and Zhi-**n Shan. Wrote the paper: Zhi-**n Shan. All authors have read and agreed to the final version of manuscript.

Corresponding authors

Correspondence to **an-Hong Fang or Zhi-**n Shan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Junjie **ao oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 424 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Chen, LW., Huang, ZQ. et al. Suppression of the Inhibitory Effect of circ_0036176-Translated Myo9a-208 on Cardiac Fibroblast Proliferation by miR-218-5p. J. of Cardiovasc. Trans. Res. 15, 548–559 (2022). https://doi.org/10.1007/s12265-022-10228-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10228-x

Keywords

Navigation