Log in

ASIC2 Synergizes with TRPV1 in the Mechano-Electrical Transduction of Arterial Baroreceptors

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Mechanosensitive ion channels (MSCs) are key molecules in the mechano-electrical transduction of arterial baroreceptors. Among them, acid-sensing ion channel 2 (ASIC2) and transient receptor potential vanilloid subfamily member 1 (TRPV1) have been studied extensively and documented to play important roles. In this study, experiments using aortic arch–aortic nerve preparations isolated from rats revealed that both ASIC2 and TRPV1 are functionally necessary, as blocking either abrogated nearly all pressure-dependent neural discharge. However, whether ASIC2 and TRPV1 work in coordination remained unclear. So we carried out cell-attached patch-clamp recordings in HEK293T cells co-expressing ASIC2 and TRPV1 and found that inhibition of ASIC2 completely blocked stretch-activated currents while inhibition of TRPV1 only partially blocked these currents. Immunofluorescence staining of aortic arch–aortic adventitia from rats showed that ASIC2 and TRPV1 are co-localized in the aortic nerve endings, and co-immunoprecipitation assays confirmed that the two proteins form a compact complex in HEK293T cells and in baroreceptors. Moreover, protein modeling analysis, exogenous co-immunoprecipitation assays, and biotin pull-down assays indicated that ASIC2 and TRPV1 interact directly. In summary, our research suggests that ASIC2 and TRPV1 form a compact complex and function synergistically in the mechano-electrical transduction of arterial baroreceptors. The model of synergism between MSCs may have important biological significance beyond ASIC2 and TRPV1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tu HY, Zhang DZ, Li YL. Cellular and molecular mechanisms underlying arterial baroreceptor remodeling in cardiovascular diseases and diabetes. Neurosci Bull 2019, 35: 98–112.

    Article  CAS  Google Scholar 

  2. Cheng ZJ, Wang R, Chen QH. Autonomic regulation of the cardiovascular system: diseases, treatments, and novel approaches. Neurosci Bull 2019, 35: 1–3.

    Article  Google Scholar 

  3. Lu YJ, Ma XY, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 2009, 64: 885–897.

    Article  CAS  Google Scholar 

  4. Inoue R, Jian Z, Kawarabayashi Y. Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 2009, 123: 371–385.

    Article  CAS  Google Scholar 

  5. Drummond HA, Welsh MJ, Abboud FM. ENaC subunits are molecular components of the arterial baroreceptor complex. Ann N Y Acad Sci 2001, 940: 42–47.

    Article  CAS  Google Scholar 

  6. Lau OC, Shen B, Wong CO, Tjong YW, Lo CY, Wang HC, et al. Author Correction: TRPC5 channels participate in pressure-sensing in aortic baroreceptors. Nat Commun 2018, 9: 16184.

    Article  CAS  Google Scholar 

  7. Zeng WZ, Marshall KL, Min S, Daou I, Chapleau MW, Abboud FM, et al. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 2018, 362: 464–467.

    Article  CAS  Google Scholar 

  8. Grundy L, Caldwell A, Garcia Caraballo S, Erickson A, Schober G, Castro J, et al. Histamine induces peripheral and central hypersensitivity to bladder distension via the histamine H1 receptor and TRPV1. Am J Physiol Renal Physiol 2020, 318: F298–F314.

    Article  CAS  Google Scholar 

  9. Kentish SJ, Frisby CL, Kritas S, Li H, Hatzinikolas G, O’Donnell TA, et al. TRPV1 channels and gastric vagal afferent signalling in lean and high fat diet induced obese mice. PLoS One 2015, 10: e0135892. https://doi.org/10.1371/journal.pone.0135892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu SY, Chen WH, Hsieh CL, Lin YW. Abundant expression and functional participation of TRPV1 at Zusanli acupoint (ST36) in mice: mechanosensitive TRPV1 as an “acupuncture-responding channel.” BMC Complement Altern Med 2014, 14: 96.

    Article  Google Scholar 

  11. Sun H, Li DP, Chen SR, Hittelman WN, Pan HL. Sensing of blood pressure increase by transient receptor potential vanilloid 1 receptors on baroreceptors. J Pharmacol Exp Ther 2009, 331: 851–859.

    Article  CAS  Google Scholar 

  12. Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero-Morales JF, Vásquez V, et al. Mammalian TRP ion channels are insensitive to membrane stretch. J Cell Sci 2019, 132: jcs238360.

  13. Abboud FM, Benson CJ. ASICs and cardiovascular homeostasis. Neuropharmacology 2015, 94: 87–98.

    Article  CAS  Google Scholar 

  14. Page AJ, Brierley SM, Martin CM, Price MP, Symonds E, Butler R, et al. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 2005, 54: 1408–1415.

    Article  CAS  Google Scholar 

  15. Wu JJ, Leng TD, **g L, Jiang N, Chen DJ, Hu YJ, et al. Two di-leucine motifs regulate trafficking and function of mouse ASIC2a. Mol Brain 2016, 9: 9.

    Article  Google Scholar 

  16. Cabo R, Alonso P, Viña E, Vázquez G, Gago A, Feito J, et al. ASIC2 is present in human mechanosensory neurons of the dorsal root ganglia and in mechanoreceptors of the glabrous skin. Histochem Cell Biol 2015, 143: 267–276.

    Article  CAS  Google Scholar 

  17. Wang X, Miyares RL, Ahern GP. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1. J Physiol 2005, 564: 541–547.

    Article  CAS  Google Scholar 

  18. Alvarez de la Rosa D, Zhang P, Shao D, White F, Canessa CM. Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc Natl Acad Sci U S A 2002, 99: 2326–2331.

  19. **n F, Cheng Y, Ren J, Zhang ST, Liu P, Zhao HY, et al. The extracellular loop of the auxiliary β1-subunit is involved in the regulation of BKCa channel mechanosensitivity. Am J Physiol Cell Physiol 2018, 315: C485–C493.

    Article  CAS  Google Scholar 

  20. Kaczor AA, Jörg M, Capuano B. The dopamine D2 receptor dimer and its interaction with homobivalent antagonists: homology modeling, docking and molecular dynamics. J Mol Model 2016, 22: 203.

    Article  Google Scholar 

  21. Simon A, Shenton F, Hunter I, Banks RW, Bewick GS. Amiloride-sensitive channels are a major contributor to mechanotransduction in mammalian muscle spindles. J Physiol 2010, 588: 171–185.

    Article  CAS  Google Scholar 

  22. Page AJ, Brierley SM, Martin CM, Hughes PA, Blackshaw LA. Acid sensing ion channels 2 and 3 are required for inhibition of visceral nociceptors by benzamil. Pain 2007, 133: 150–160.

    Article  CAS  Google Scholar 

  23. Ducrocq GP, Estrada JA, Kim JS, Kaufman MP. Blocking the transient receptor potential vanilloid-1 does not reduce the exercise pressor reflex in healthy rats. Am J Physiol Regul Integr Comp Physiol 2019, 317: R576–R587.

    Article  Google Scholar 

  24. Yang MH, Jung SH, Sethi G, Ahn KS. Pleiotropic pharmacological actions of capsazepine, a synthetic analogue of capsaicin, against various cancers and inflammatory diseases. Molecules 2019, 24: E995.

    Article  Google Scholar 

  25. Correll CC, Phelps PT, Anthes JC, Umland S, Greenfeder S. Cloning and pharmacological characterization of mouse TRPV1. Neurosci Lett 2004, 370: 55–60.

    Article  CAS  Google Scholar 

  26. Cahusac PM. Effects of transient receptor potential (TRP) channel agonists and antagonists on slowly adapting type II mechanoreceptors in the rat sinus hair follicle. J Peripher Nerv Syst 2009, 14: 300–309.

    Article  CAS  Google Scholar 

  27. Kullmann FA, Shah MA, Birder LA, de Groat WC. Functional TRP and ASIC-like channels in cultured urothelial cells from the rat. Am J Physiol Renal Physiol 2009, 296: F892–F901.

    Article  CAS  Google Scholar 

  28. Jansen C, Shimoda LMN, Kawakami JK, Ang L, Bacani AJ, Baker JD, et al. Myrcene and terpene regulation of TRPV1. Channels (Austin) 2019, 13: 344–366.

    Article  CAS  Google Scholar 

  29. Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018, 47: 3574–3620.

    Article  CAS  Google Scholar 

  30. Fischer MJ, Balasuriya D, Jeggle P, Goetze TA, McNaughton PA, Reeh PW, et al. Direct evidence for functional TRPV1/TRPA1 heteromers. Pflugers Arch 2014, 466: 2229–2241.

    Article  CAS  Google Scholar 

  31. Staruschenko A, Jeske NA, Akopian AN. Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. J Biol Chem 2010, 285: 15167–15177.

    Article  CAS  Google Scholar 

  32. Wu Y, Liu YF, Hou PP, Yan ZH, Kong WJ, Liu BY, et al. TRPV1 channels are functionally coupled with BK(mSlo1) channels in rat dorsal root ganglion (DRG) neurons. PLoS One 2013, 8: e78203. https://doi.org/10.1371/journal.pone.0078203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akopian AN, Ruparel NB, Jeske NA, Hargreaves KM. Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol 2007, 583: 175–193.

    Article  CAS  Google Scholar 

  34. Thrasher TN. Baroreceptors, baroreceptor unloading, and the long-term control of blood pressure. Am J Physiol Regul Integr Comp Physiol 2005, 288: R819–R827.

    Article  CAS  Google Scholar 

  35. Thrasher TN. Arterial baroreceptor input contributes to long-term control of blood pressure. Curr Hypertens Rep 2006, 8: 249–254.

    Article  Google Scholar 

  36. Yu W, Liao Y, Huang YQ, Chen SY, Sun Y, Sun CF, et al. Endogenous hydrogen sulfide enhances carotid sinus baroreceptor sensitivity by activating the transient receptor potential cation channel subfamily V member 1 (TRPV1) channel. J Am Heart Assoc 2017, 6: e004971.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31871147 and 31371162) and the Science and Technology Development Program of Bei**g Municipal Education Commission (KZ202010025038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Chen Zhang.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest, financial or otherwise.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1407 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Zhang, S., Zhao, H. et al. ASIC2 Synergizes with TRPV1 in the Mechano-Electrical Transduction of Arterial Baroreceptors. Neurosci. Bull. 37, 1381–1396 (2021). https://doi.org/10.1007/s12264-021-00737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00737-1

Keywords

Navigation