Log in

Emerging Role of PD-1 in the Central Nervous System and Brain Diseases

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Programmed cell death protein 1 (PD-1) is an immune checkpoint modulator and a major target of immunotherapy as anti-PD-1 monoclonal antibodies have demonstrated remarkable efficacy in cancer treatment. Accumulating evidence suggests an important role of PD-1 in the central nervous system (CNS). PD-1 has been implicated in CNS disorders such as brain tumors, Alzheimer’s disease, ischemic stroke, spinal cord injury, multiple sclerosis, cognitive function, and pain. PD-1 signaling suppresses the CNS immune response via resident microglia and infiltrating peripheral immune cells. Notably, PD-1 is also widely expressed in neurons and suppresses neuronal activity via downstream Src homology 2 domain-containing protein tyrosine phosphatase 1 and modulation of ion channel function. An improved understanding of PD-1 signaling in the cross-talk between glial cells, neurons, and peripheral immune cells in the CNS will shed light on immunomodulation, neuromodulation, and novel strategies for treating brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992, 11: 3887–3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996, 8: 765–772.

    Article  CAS  PubMed  Google Scholar 

  3. Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front Immunol 2016, 7: 550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Dong HD, Zhu GF, Tamada K, Chen LP. B7–H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999, 5: 1365–1369.

    Article  CAS  PubMed  Google Scholar 

  5. Freeman GJ, Long AJ, Iwai Y, Latchman Y, Bourque K, Brown JA, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7-family member leads to negative regulation of lymphocyte activation. Blood 2000, 96: 810a–811a.

    Google Scholar 

  6. Latchman Y, Wood C, Chemova T, Iwai Y, Malenkovich N, Long A, et al. PD-L2, a novel B7 homologue, is a second ligand for PD-1 and inhibits T cell activation. FASEB J 2001, 15: A345–A345.

    Google Scholar 

  7. Tseng SY, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI, et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 2001, 193: 839–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 2002, 169: 5538–5545.

    Article  CAS  PubMed  Google Scholar 

  9. Sugita S, Usui Y, Horie S, Futagami Y, Aburatani H, Okazaki T, et al. T-cell suppression by programmed cell death 1 ligand 1 on retinal pigment epithelium during inflammatory conditions. Invest Ophthalmol Vis Sci 2009, 50: 2862–2870.

    Article  PubMed  Google Scholar 

  10. Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 2003, 33: 2706–2716.

    Article  CAS  PubMed  Google Scholar 

  11. Hu J, He H, Yang Z, Zhu G, Kang L, **g X, et al. Programmed death ligand-1 on microglia regulates Th1 differentiation via nitric oxide in experimental autoimmune encephalomyelitis. Neurosci Bull 2016, 32: 70–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci U S A 2003, 100: 5336–5341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keir ME, Francisco LM, Sharpe AH. PD-1 and its ligands in T-cell immunity. Curr Opin Immunol 2007, 19: 309–314.

    Article  CAS  PubMed  Google Scholar 

  14. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999, 11: 141–151.

    Article  CAS  PubMed  Google Scholar 

  15. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001, 291: 319–322.

    Article  CAS  PubMed  Google Scholar 

  16. Dong HD, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7–H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med 2002, 8: 793–800.

    Article  CAS  PubMed  Google Scholar 

  17. Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong HD, Webster WS, et al. Costimulatory B7–H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. J Urol 2005, 173: 169–169.

    Article  Google Scholar 

  18. Zhao S, Li F, Leak RK, Chen J, Hu X. Regulation of neuroinflammation through programed death-1/programed death ligand signaling in neurological disorders. Front Cell Neurosci 2014, 8: 271.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen G, Kim YH, Li H, Luo H, Liu DL, Zhang ZJ, et al. PD-L1 inhibits acute and chronic pain by suppressing nociceptive neuron activity via PD-1. Nat Neurosci 2017, 20: 917–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523: 337–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alves de Lima K, Rustenhoven J, Kipnis J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu Rev Immunol 2020, 38: 597–620.

    Article  CAS  PubMed  Google Scholar 

  22. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H. Programmed death-1 pathway limits central nervous system inflammation and neurologic deficits in murine experimental stroke. Stroke 2011, 42: 2578–2583.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yao A, Liu F, Chen K, Tang L, Liu L, Zhang K, et al. Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice. Neurotherapeutics 2014, 11: 636–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang C, Wang Z, Donnelly CR, Wang K, Andriessen AS, Tao X, et al. PD-1 regulates GABAergic neurotransmission and GABA-mediated analgesia and anesthesia. iScience 2020, 23: 101570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010, 236: 219–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 2012, 24: 207–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Riley JL. PD-1 signaling in primary T cells. Immunol Rev 2009, 229: 114–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 2004, 173: 945–954.

    Article  CAS  PubMed  Google Scholar 

  29. Quigley M, Pereyra F, Nilsson B, Porichis F, Fonseca C, Eichbaum Q, et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat Med 2010, 16: 1147–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu D, Ni Z, Liu X, Feng S, Dong X, Shi X, et al. Beyond T Cells: understanding the role of PD-1/PD-L1 in tumor-associated macrophages. J Immunol Res 2019, 2019: 1919082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017, 545: 495–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009, 29: 13435–13444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ransohoff RM. A polarizing question: do M1 and M2 microglia exist?. Nat Neurosci 2016, 19: 987–991.

    Article  CAS  PubMed  Google Scholar 

  34. Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron 2018, 100: 1292–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qin C, Zhou LQ, Ma XT, Hu ZW, Yang S, Chen M, et al. Dual functions of microglia in ischemic stroke. Neurosci Bull 2019, 35: 921–933.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ohmori Y, Hamilton TA. IL-4-induced STAT6 suppresses IFN-gamma-stimulated STAT1-dependent transcription in mouse macrophages. J Immunol 1997, 159: 5474–5482.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Ma CJ, Ni L, Zhang CL, Wu XY, Kumaraguru U, et al. Cross-talk between programmed death-1 and suppressor of cytokine signaling-1 in inhibition of IL-12 production by monocytes/macrophages in hepatitis C virus infection. J Immunol 2011, 186: 3093–3103.

    Article  CAS  PubMed  Google Scholar 

  38. Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 2005, 114: 149–159.

    Article  PubMed  Google Scholar 

  39. Katsura H, Obata K, Mizushima T, Sakurai J, Kobayashi K, Yamanaka H, et al. Activation of Src-family kinases in spinal microglia contributes to mechanical hypersensitivity after nerve injury. J Neurosci 2006, 26: 8680–8690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen G, Luo X, Qadri MY, Berta T, Ji RR. Sex-dependent glial signaling in pathological pain: distinct roles of spinal microglia and astrocytes. Neurosci Bull 2018, 34: 98–108.

    Article  CAS  PubMed  Google Scholar 

  41. Chen Q, Xu LX, Du TJ, Hou YX, Fan WJ, Wu QL, et al. Enhanced expression of PD-L1 on microglia after surgical brain injury exerts self-protection from inflammation and promotes neurological repair. Neurochem Res 2019, 44: 2470–2481.

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Guo G, Guan H, Yu Y, Lu J, Yu J. Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res 2019, 38: 87.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xue S, Hu M, Iyer V, Yu J. Blocking the PD-1/PD-L1 pathway in glioma: a potential new treatment strategy. J Hematol Oncol 2017, 10: 81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Johanns T, Waqar SN, Morgensztern D. Immune checkpoint inhibition in patients with brain metastases. Ann Transl Med 2016, 4: S9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Filley AC, Henriquez M, Dey M. Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget 2017, 8: 91779–91794.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cavaco M, Gaspar D, Arb Castanho M, Neves V. Antibodies for the treatment of brain metastases, a dream or a reality? Pharmaceutics 2020, 12.

  47. Sampson JH, Gunn MD, Fecci PE, Ashley DM. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer 2020, 20: 12–25.

    Article  CAS  PubMed  Google Scholar 

  48. Guldner IH, Wang Q, Yang L, Golomb SM, Zhao Z, Lopez JA, et al. CNS-native myeloid cells drive immune suppression in the brain metastatic niche through Cxcl10. Cell 2020, 183: 1234–1248. e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Molgora M, Esaulova E, Vermi W, Hou J, Chen Y, Luo J, et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 2020, 182: 886–900. e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Katzenelenbogen Y, Sheban F, Yalin A, Yofe I, Svetlichnyy D, Jaitin DA, et al. Coupled scRNA-Seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 2020, 182: 872–885. e19.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med 2019, 25: 462–469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Goldberg SB, Gettinger SN, Mahajan A, Chiang AC, Herbst RS, Sznol M, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 2016, 17: 976–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Feng S, Coward J, McCaffrey E, Coucher J, Kalokerinos P, O’Byrne K. Pembrolizumab-Induced encephalopathy: a review of neurological toxicities with immune checkpoint inhibitors. J Thorac Oncol 2017, 12: 1626–1635.

    Article  PubMed  Google Scholar 

  54. Kao JC, Liao B, Markovic SN, Klein CJ, Naddaf E, Staff NP, et al. Neurological complications associated with anti-programmed death 1 (PD-1) antibodies. JAMA Neurol 2017, 74: 1216–1222.

    Article  PubMed  PubMed Central  Google Scholar 

  55. McGinnis GJ, Raber J. CNS side effects of immune checkpoint inhibitors: preclinical models, genetics and multimodality therapy. Immunotherapy 2017, 9: 929–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mirabile A, Brioschi E, Ducceschi M, Piva S, Lazzari C, Bulotta A, et al. PD-1 inhibitors-related neurological toxicities in patients with non-small-cell lung cancer: a literature review. Cancers (Basel) 2019, 11.

  57. Fan DY, Wang YJ. Early intervention in Alzheimer’s disease: how early is early enough? Neurosci Bull 2020, 36: 195–197.

    Article  CAS  PubMed  Google Scholar 

  58. Bharadwaj PR, Dubey AK, Masters CL, Martins RN, Macreadie IG. Abeta aggregation and possible implications in Alzheimer’s disease pathogenesis. J Cell Mol Med 2009, 13: 412–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saresella M, Calabrese E, Marventano I, Piancone F, Gatti A, Farina E, et al. A potential role for the PD1/PD-L1 pathway in the neuroinflammation of Alzheimer’s disease. Neurobiol Aging 2012, 33: e611-622.

    Article  CAS  Google Scholar 

  60. Torres KC, Araujo Pereira P, Lima GS, Bozzi IC, Rezende VB, Bicalho MA, et al. Increased frequency of T cells expressing IL-10 in Alzheimer disease but not in late-onset depression patients. Prog Neuropsychopharmacol Biol Psychiatry 2013, 47: 40–45.

    Article  CAS  PubMed  Google Scholar 

  61. Guillot-Sestier MV, Doty KR, Gate D, Rodriguez J Jr, Leung BP, Rezai-Zadeh K, et al. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 2015, 85: 534–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koronyo-Hamaoui M, Ko MHK, Koronyo Y, Azoulay D, Seksenyan A, Kunis G, et al. Attenuation of AD-like neuropathology by harnessing peripheral immune cells: local elevation of IL-10 and MMP-9. J Neurochem 2009, 111: 1409–1424.

    Article  CAS  PubMed  Google Scholar 

  63. Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, et al. IFN-gamma-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 2013, 136: 3427–3440.

    Article  PubMed  Google Scholar 

  64. Rosenzweig N, Dvir-Szternfeld R, Tsitsou-Kampeli A, Keren-Shaul H, Ben-Yehuda H, Weill-Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun 2019, 10: 465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baruch K, Deczkowska A, Rosenzweig N, Tsitsou-Kampeli A, Sharif AM, Matcovitch-Natan O, et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat Med 2016, 22: 135–137.

    Article  CAS  PubMed  Google Scholar 

  66. Lin Y, Rajamohamedsait HB, Sandusky-Beltran LA, Gamallo-Lana B, Mar A, Sigurdsson EM. Chronic PD-1 checkpoint blockade does not affect cognition or promote tau clearance in a tauopathy mouse model. Front Aging Neurosci 2019, 11: 377.

    Article  CAS  PubMed  Google Scholar 

  67. Latta-Mahieu M, Elmer B, Bretteville A, Wang YM, Lopez-Grancha M, Goniot P, et al. Systemic immune-checkpoint blockade with anti-PD1 antibodies does not alter cerebral amyloid-beta burden in several amyloid transgenic mouse models. Glia 2018, 66: 492–504.

    Article  PubMed  Google Scholar 

  68. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999, 22: 391–397.

    Article  CAS  PubMed  Google Scholar 

  69. Bodhankar S, Chen YX, Vandenbark AA, Murphy SJ, Offner H. IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metab Brain Dis 2013, 28: 375–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ren XF, Akiyoshi K, Dziennis S, Vandenbark AA, Herson PS, Hurn PD, et al. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci 2011, 31: 8556–8563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li PY, Mao LL, Liu XR, Gan Y, Zheng J, Thomson AW, et al. Essential role of program death 1-ligand 1 in regulatory T-cell-afforded protection against blood-brain barrier damage after stroke. Stroke 2014, 45: 857–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bodhankar S, Chen YX, Lapato A, Dotson AL, Wang JM, Vandenbark AA, et al. PD-L1 monoclonal antibody treats ischemic stroke by controlling central nervous system inflammation. Stroke 2015, 46: 2926–2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H. PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. J Neuroinflammation 2013, 10: 111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Han R, Luo J, Shi Y, Yao Y, Hao J. PD-L1 (programmed death ligand 1) protects against experimental intracerebral hemorrhage-induced brain injury. Stroke 2017, 48: 2255–2262.

    Article  CAS  PubMed  Google Scholar 

  75. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 2006, 12: 441–445.

    Article  CAS  PubMed  Google Scholar 

  76. Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 2008, 14: 331–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li G, Fan ZK, Gu GF, Jia ZQ, Zhang QQ, Dai JY, et al. Epidural spinal cord stimulation promotes motor functional recovery by enhancing oligodendrocyte survival and differentiation and by protecting myelin after spinal cord injury in rats. Neurosci Bull 2020, 36: 372–384.

    Article  PubMed  Google Scholar 

  78. Huang Q, Duan W, Sivanesan E, Liu S, Yang F, Chen Z, et al. Spinal cord stimulation for pain treatment after spinal cord injury. Neurosci Bull 2019, 35: 527–539.

    Article  PubMed  Google Scholar 

  79. Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 2009, 60: 202–213.

    Article  CAS  PubMed  Google Scholar 

  80. Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 2008, 209: 378–388.

    Article  CAS  PubMed  Google Scholar 

  81. Zha J, Smith A, Andreansky S, Bracchi-Ricard V, Bethea JR. Chronic thoracic spinal cord injury impairs CD8+ T-cell function by up-regulating programmed cell death-1 expression. J Neuroinflammation 2014, 11: 65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. He HF, Zhou YY, Zhou YL, Zhuang JY, He X, Wang SY, et al. Dexmedetomidine mitigates microglia-mediated neuroinflammation through upregulation of programmed cell death protein 1 in a rat spinal cord injury model. J Neurotrauma 2018, 35: 2591–2603.

    Article  PubMed  Google Scholar 

  83. Compston A, Coles A. Multiple sclerosis. Lancet 2008, 372: 1502–1517.

    Article  CAS  PubMed  Google Scholar 

  84. Trabattoni D, Saresella M, Pacei M, Marventano I, Mendozzi L, Rovaris M, et al. Costimulatory pathways in multiple sclerosis: distinctive expression of PD-1 and PD-L1 in patients with different patterns of disease. J Immunol 2009, 183: 4984–4993.

    Article  CAS  PubMed  Google Scholar 

  85. Kroner A, Mehling M, Hemmer B, Rieckmann P, Toyka KV, Maurer M, et al. A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol 2005, 58: 50–57.

    Article  CAS  PubMed  Google Scholar 

  86. Ortler S, Leder C, Mittelbronn M, Zozulya AL, Knolle PA, Chen L, et al. B7–H1 restricts neuroantigen-specific T cell responses and confines inflammatory CNS damage: implications for the lesion pathogenesis of multiple sclerosis. Eur J Immunol 2008, 38: 1734–1744.

    Article  CAS  PubMed  Google Scholar 

  87. Salama AD, Chitnis T, Imitola J, Ansari MJ, Akiba H, Tushima F, et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 2003, 198: 71–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Harari D, Kuhn N, Abramovich R, Sasson K, Zozulya AL, Smith P, et al. Enhanced in vivo efficacy of a type I interferon superagonist with extended plasma half-life in a mouse model of multiple sclerosis. J Biol Chem 2014, 289: 29014–29029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Carter LL, Leach MW, Azoitei ML, Cui J, Pelker JW, Jussif J, et al. PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 2007, 182: 124–134.

    Article  CAS  PubMed  Google Scholar 

  90. Bodhankar S, Wang C, Vandenbark AA, Offner H. Estrogen-induced protection against experimental autoimmune encephalomyelitis is abrogated in the absence of B cells. Eur J Immunol 2011, 41: 1165–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cheng X, Zhao Z, Ventura E, Gran B, Shindler KS, Rostami A. The PD-1/PD-L pathway is up-regulated during IL-12-induced suppression of EAE mediated by IFN-gamma. J Neuroimmunol 2007, 185: 75–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhao J, Ji RR. Anti-PD-1 treatment as a neurotherapy to enhance neuronal excitability, synaptic plasticity and memory. BioRxiv 2019, https://doi.org/10.1101/870600

    Article  Google Scholar 

  93. **ao X, Zhao XT, Xu LC, Yue LP, Liu FY, Cai J, et al. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats. Pain 2015, 156: 597–608.

    Article  CAS  PubMed  Google Scholar 

  94. Liu BL, Cao QL, Zhao X, Liu HZ, Zhang YQ. Inhibition of TRPV1 by SHP-1 in nociceptive primary sensory neurons is critical in PD-L1 analgesia. JCI Insight 2020, 5.

  95. Wang Z, Jiang C, He Q, Matsuda M, Han Q, Wang K, et al. Anti-PD-1 treatment impairs opioid antinociception in rodents and nonhuman primates. Sci Transl Med 2020, 12.

  96. Sheng HY, Zhang YQ. Emerging molecular targets for the management of cancer pain. Neurosci Bull 2020, 36: 1225–1228.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Acosta C, Djouhri L, Watkins R, Berry C, Bromage K, Lawson SN. TREK2 expressed selectively in IB4-binding C-fiber nociceptors hyperpolarizes their membrane potentials and limits spontaneous pain. J Neurosci 2014, 34: 1494–1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang K, Gu Y, Liao Y, Bang S, Donnelly CR, Chen O, et al. PD-1 blockade inhibits osteoclast formation and murine bone cancer pain. J Clin Invest 2020, 130: 3603–3620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yuan LL, Adams JP, Swank M, Sweatt JD, Johnston D. Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci 2002, 22: 4860–4868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Thibult ML, Mamessier E, Gertner-Dardenne J, Pastor S, Just-Landi S, Xerri L, et al. PD-1 is a novel regulator of human B-cell activation. Int Immunol 2013, 25: 129–137.

    Article  CAS  PubMed  Google Scholar 

  101. Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol 2017, 14: 203–220.

    Article  CAS  PubMed  Google Scholar 

  102. Wang X, Wang G, Wang Z, Liu B, Han N, Li J, et al. PD-1-expressing B cells suppress CD4+ and CD8+ T cells via PD-1/PD-L1-dependent pathway. Mol Immunol 2019, 109: 20–26.

    Article  CAS  PubMed  Google Scholar 

  103. Lim TS, Chew V, Sieow JL, Goh S, Yeong JP, Soon AL, et al. PD-1 expression on dendritic cells suppresses CD8+ T cell function and antitumor immunity. Oncoimmunology 2016, 5: e1085146.

    Article  PubMed  CAS  Google Scholar 

  104. Yao S, Wang S, Zhu Y, Luo L, Zhu G, Flies S, et al. PD-1 on dendritic cells impedes innate immunity against bacterial infection. Blood 2009, 113: 5811–5818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Qin W, Hu L, Zhang X, Jiang S, Li J, Zhang Z, et al. The diverse function of PD-1/PD-L pathway beyond cancer. Front Immunol 2019, 10: 2298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bally AP, Lu P, Tang Y, Austin JW, Scharer CD, Ahmed R, et al. NF-κB regulates PD-1 expression in macrophages. J Immunol 2015, 194: 4545–4554.

    Article  CAS  PubMed  Google Scholar 

  107. Huang X, Venet F, Wang YL, Lepape A, Yuan Z, Chen Y, et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci U S A 2009, 106: 6303–6308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Norris S, Coleman A, Kuri-Cervantes L, Bower M, Nelson M, Goodier MR. PD-1 expression on natural killer cells and CD8+ T cells during chronic HIV-1 infection. Viral Immunol 2012, 25: 329–332.

    Article  CAS  PubMed  Google Scholar 

  109. Concha-Benavente F, Kansy B, Moskovitz J, Moy J, Chandran U, Ferris RL. PD-L1 mediates dysfunction in activated PD-1+ NK cells in head and neck cancer patients. Cancer Immunol Res 2018, 6: 1548–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen L, Sham CW, Chan AM, Francisco LM, Wu Y, Mareninov S, et al. Role of the immune modulator programmed cell death-1 during development and apoptosis of mouse retinal ganglion cells. Invest Ophthalmol Vis Sci 2009, 50: 4941–4948.

    Article  PubMed  Google Scholar 

  111. Wang W, Chan A, Qin Y, Kwong JMK, Caprioli J, Levinson R, et al. Programmed cell death-1 is expressed in large retinal ganglion cells and is upregulated after optic nerve crush. Exp Eye Res 2015, 140: 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fourcade J, Sun ZJ, Benallaoua M, Guillaume P, Luescher IF, Sander C, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 2010, 207: 2175–2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 2013, 73: 128–138.

    Article  CAS  PubMed  Google Scholar 

  114. Mizuno R, Sugiura D, Shimizu K, Maruhashi T, Watada M, Okazaki IM, et al. PD-1 primarily targets TCR signal in the inhibition of functional T cell activation. Front Immunol 2019, 10: 630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schwartz M, Arad M, Ben-Yehuda H. Potential immunotherapy for Alzheimer disease and age-related dementia. Dialogues Clin Neurosci 2019, 21: 21–25.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 2019, 25: 477–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Caccese M, Indraccolo S, Zagonel V, Lombardi G. PD-1/PD-L1 immune-checkpoint inhibitors in glioblastoma: A concise review. Crit Rev Oncol Hematol 2019, 135: 128–134.

    Article  PubMed  Google Scholar 

  118. Litak J, Mazurek M, Grochowski C, Kamieniak P, Rolinski J. PD-L1/PD-1 axis in glioblastoma multiforme. Int J Mol Sci 2019, 20.

  119. Hardcastle J, Mills L, Malo CS, ** F, Kurokawa C, Geekiyanage H, et al. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment. Neuro-Oncol 2017, 19: 493–502.

    CAS  PubMed  Google Scholar 

  120. Hugo W, Zaretsky JM, Sun L, Song CY, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 2016, 165: 35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E, et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell 2015, 162: 1242–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359: 97–103.

    Article  CAS  PubMed  Google Scholar 

  123. Matson V, Fessler J, Bao R, Chongsuwat T, Zha YY, Alegre ML, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018, 359: 104–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pittet CL, Newcombe J, Prat A, Arbour N. Human brain endothelial cells endeavor to immunoregulate CD8 T cells via PD-1 ligand expression in multiple sclerosis. J Neuroinflammation 2011, 8: 155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Javan MR, Aslani S, Zamani MR, Rostamnejad J, Asadi M, Farhoodi M, et al. Downregulation of immunosuppressive molecules, PD-1 and PD-L1 but not PD-L2, in the patients with multiple sclerosis. Iran J Allergy Asthma Immunol 2016, 15: 296–302.

    PubMed  Google Scholar 

  126. Shi S, Han Y, Wang D, Guo P, Wang J, Ren T, et al. PD-L1 and PD-1 expressed in trigeminal ganglia may inhibit pain in an acute migraine model. Cephalalgia 2020, 40: 288–298.

    Article  PubMed  Google Scholar 

  127. Hirth M, Gandla J, Kuner R. A checkpoint to pain. Nat Neurosci 2017, 20: 897–899.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang J, Zhang H, Luo Y. Association between activation of the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway and pain in patients with cancer. Med Sci Monit 2019, 25: 1275–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work related to this review was partially supported by Duke University Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junli Zhao or Ru-Rong Ji.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Roberts, A., Wang, Z. et al. Emerging Role of PD-1 in the Central Nervous System and Brain Diseases. Neurosci. Bull. 37, 1188–1202 (2021). https://doi.org/10.1007/s12264-021-00683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00683-y

Keywords

Navigation