Log in

Abnormal Effective Connectivity of the Anterior Forebrain Regions in Disorders of Consciousness

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

A number of studies have indicated that disorders of consciousness result from multifocal injuries as well as from the impaired functional and anatomical connectivity between various anterior forebrain regions. However, the specific causal mechanism linking these regions remains unclear. In this study, we used spectral dynamic causal modeling to assess how the effective connections (ECs) between various regions differ between individuals. Next, we used connectome-based predictive modeling to evaluate the performance of the ECs in predicting the clinical scores of DOC patients. We found increased ECs from the striatum to the globus pallidus as well as from the globus pallidus to the posterior cingulate cortex, and decreased ECs from the globus pallidus to the thalamus and from the medial prefrontal cortex to the striatum in DOC patients as compared to healthy controls. Prediction of the patients’ outcome was effective using the negative ECs as features. In summary, the present study highlights a key role of the thalamo-basal ganglia-cortical loop in DOCs and supports the anterior forebrain mesocircuit hypothesis. Furthermore, EC could be potentially used to assess the consciousness level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1: Regions of interest selected in the current study.
Fig. 2: Results of DCM post-hoc selection and one-sample t-tests.
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koenig MA, Holt JL, Ernst T, Buchthal SD, Nakagawa K, Stenger VA, et al. MRI default mode network connectivity is associated with functional outcome after cardiopulmonary arrest. Neurocrit Care 2014, 20: 348–357.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Norton L, Hutchison RM, Young GB, Lee DH, Sharpe MD, Mirsattari SM. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology 2012, 78: 175–181.

    Article  PubMed  CAS  Google Scholar 

  3. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJF, Bruno MA, Boveroux P, Schnakers C, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2009, 133: 161–171.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Laureys S, Schiff ND. Coma and consciousness: paradigms (re)framed by neuroimaging. Neuroimage 2012, 61: 478–491.

    Article  PubMed  Google Scholar 

  5. Qiu MH, Vetrivelan R, Fuller PM, Lu J. Basal ganglia control of sleep-wake behavior and cortical activation. Eur J Neurosci 2010, 31: 499–507.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Laudes T, Meis S, Munsch T, Lessmann V. Impaired transmission at corticothalamic excitatory inputs and intrathalamic GABAergic synapses in the ventrobasal thalamus of heterozygous BDNF knockout mice. Neuroscience 2012, 222: 215–227.

    Article  PubMed  CAS  Google Scholar 

  7. Mhuircheartaigh RN, Rosenorn-Lanng D, Wise R, Jbabdi S, Rogers R, Tracey I. Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J Neurosci 2010, 30: 9095–9102.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 2010, 33: 1–9.

    Article  PubMed  CAS  Google Scholar 

  9. Giacino JT, Fins JJ, Laureys S, Schiff ND. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 2014, 10: 99–114.

    Article  PubMed  Google Scholar 

  10. Yd VDW, Witter MP, Groenewegen HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 2002, 39: 107–140.

    Article  Google Scholar 

  11. Fridman EA, Beattie BJ, Broft A, Laureys S, Schiff ND. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proc Natl Acad Sci U S A 2014, 111: 6473–6478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fridman EA, Schiff ND. Neuromodulation of the conscious state following severe brain injuries. Curr Opin Neurobiol 2014, 29: 172–177.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Lant ND, Gonzalez-Lara LE, Owen AM, Fernandez-Espejo D. Relationship between the anterior forebrain mesocircuit and the default mode network in the structural bases of disorders of consciousness. Neuroimage Clin 2016, 10: 27–35.

    Article  PubMed  Google Scholar 

  14. Liu J, Lee HJ, Weitz AJ, Fang Z, Lin P, Choy M, et al. Frequency-selective control of cortical and subcortical networks by central thalamus. Elife 2015, 4: e09215.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schiff ND. Central thalamic deep brain stimulation to support anterior forebrain mesocircuit function in the severely injured brain. J Neural Transm (Vienna) 2016, 123: 797–806.

    Article  Google Scholar 

  16. Schiff ND. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci 2008, 1129: 105.

    Article  PubMed  Google Scholar 

  17. Laureys S. The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 2005, 9: 556.

    Article  PubMed  Google Scholar 

  18. Laureys S, Faymonville ME, Luxen A, Lamy M, Franck G, Maquet P. Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 2000, 355: 1790.

    Article  PubMed  CAS  Google Scholar 

  19. Laureys S, Gosseries O, Tononi G. The Neurology of Consciousness: Cognitive Neuroscience and Neuropathology. Cambridge: Academic Press, 2015.

    Google Scholar 

  20. Wu W, Cui L, Fu Y, Tian Q, Liu L, Zhang X, et al. Sleep and cognitive abnormalities in acute minor thalamic infarction. Neurosci Bull 2016: 341–348.

  21. Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 2011, 519: 933–956.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boly M, Moran R, Murphy M, Boveroux P, Bruno MA, Noirhomme Q, et al. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J Neurosci 2012, 32: 7082–7090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Monti MM, Lutkenhoff ES, Rubinov M, Boveroux P, Vanhaudenhuyse A, Gosseries O, et al. Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness. PLoS Comput Biol 2013, 9: e1003271.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Constantinople CM, Bruno RM. Effects and mechanisms of wakefulness on local cortical networks. Neuron 2011, 69: 1061–1068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lutkenhoff ES, Chiang J, Tshibanda L, Kamau E, Kirsch M, Pickard JD, et al. Thalamic and extrathalamic mechanisms of consciousness after severe brain injury. Ann Neurol 2015, 78: 68.

    Article  PubMed  Google Scholar 

  26. Dreher JC, Grafman J. The roles of the cerebellum and basal ganglia in timing and error prediction. Eur J Neurosci 2002, 16: 1609–1619.

    Article  PubMed  Google Scholar 

  27. Häger F, Volz HP, Gaser C, Mentzel HJ, Kaiser WA, Sauer H. Challenging the anterior attentional system with a continuous performance task: a functional magnetic resonance imaging approach. Eur Arch Psychiatry Clin Neurosci 1998, 248: 161–170.

    Article  PubMed  Google Scholar 

  28. Ring H, Serra-Mestres J. Neuropsychiatry of the basal ganglia. J Neurol Neurosurg Psychiatry 2002, 72: 12–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 2014, 17: 1022–1030.

    Article  PubMed  CAS  Google Scholar 

  30. Cui G, Jun SB, ** X, Pham MD, Vogel SS, Lovinger DM, et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 2013, 494: 238–242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Crone JS, Lutkenhoff ES, Bio BJ, Laureys S, Monti MM. Testing proposed neuronal models of effective connectivity within the cortico-basal ganglia-thalamo-cortical loop during loss of consciousness. Cereb Cortex 2017, 27: 2727–2738.

    PubMed  Google Scholar 

  32. Rosazza C, Andronache A, Sattin D, Bruzzone MG, Marotta G, Nigri A, et al. Multimodal study of default-mode network integrity in disorders of consciousness. Ann Neurol 2016. https://doi.org/10.1002/ana.24634.

    Article  PubMed  Google Scholar 

  33. Di Perri C, Bahri MA, Amico E, Thibaut A, Heine L, Antonopoulos G, et al. Neural correlates of consciousness in patients who have emerged from a minimally conscious state: a cross-sectional multimodal imaging study. Lancet Neurol 2016, 15: 830–842.

    Article  PubMed  Google Scholar 

  34. Demertzi A, Gómez F, Crone JS, Vanhaudenhuyse A, Tshibanda L, Noirhomme Q, et al. Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Cortex 2014, 52: 35–46.

    Article  PubMed  Google Scholar 

  35. Hannawi Y, Lindquist MA, Caffo BS, Sair HI, Stevens RD. Resting brain activity in disorders of consciousness: A systematic review and meta-analysis. Neurology 2015, 84: 1272–1280.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Laureys S, Gosseries O, Tononi G. The Neurology of Conciousness, 2nd edn. Cambridge: Academic Press, 2016.

    Google Scholar 

  37. Dehaene S, Changeux JP. Experimental and theoretical approaches to conscious processing. Neuron 2011, 70: 200–227.

    Article  PubMed  CAS  Google Scholar 

  38. Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 2004, 85: 2020–2029.

    Article  PubMed  Google Scholar 

  39. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007, 38: 95.

    Article  PubMed  Google Scholar 

  40. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, et al. The human Brainnetome Atlas: a new brain atlas based on connectional architecture. Cereb Cortex 2016, 26: 3508–3526.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15: 273–289.

    Article  PubMed  CAS  Google Scholar 

  42. Crone JS, Schurz M, Holler Y, Bergmann J, Monti M, Schmid E, et al. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network. Neuroimage 2015, 110: 101–109.

    Article  PubMed  Google Scholar 

  43. Friston K, Penny W. Post hoc Bayesian model selection. Neuroimage 2011, 56: 2089–2099.

    Article  PubMed  Google Scholar 

  44. Shen X, Finn ES, Scheinost D, Rosenberg MD, Chun MM, Papademetris X, et al. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat Protoc 2017, 12: 506–518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989, 12: 366–375.

    Article  PubMed  CAS  Google Scholar 

  46. Saunders A, Oldenburg IA, Berezovskii VK, Johnson CA, Kingery ND, Elliott HL, et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature 2015, 521: 85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Freeze BS, Kravitz AV, Hammack N, Berke JD, Kreitzer AC. Control of basal ganglia output by direct and indirect pathway projection neurons. J Neurosci 2013, 33: 18531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 2010, 67: 28–29.

    Google Scholar 

  49. Smith Y, Bevan MD, Shink E, Bolam JP. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 1998, 86: 353.

    Article  PubMed  CAS  Google Scholar 

  50. Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA. Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci 2005, 28: 364.

    Article  PubMed  CAS  Google Scholar 

  51. Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, et al. Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci U S A 2009, 106: 11376–11381.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Horovitz SG, Fukunaga M, de Zwart JA, Van GP, Fulton SC, Balkin TJ, et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 2008, 29: 671–682.

    Article  PubMed  Google Scholar 

  53. Fernándezespejo D, Junque C, Cruse D, Bernabeu M, Roigrovira T, Fábregas N, et al. Combination of diffusion tensor and functional magnetic resonance imaging during recovery from the vegetative state. BMC Neurol 2010, 10: 77.

    Article  Google Scholar 

  54. Haber SN, Fudge JL, Mcfarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 2000, 20: 2369.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Chikama M, Mcfarland NR, Amaral DG, Haber SN. Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 1997, 17: 9686.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Somerville LH, Jones RM, Ruberry EJ, Dyke JP, Glover G, Casey BJ. The medial prefrontal cortex and the emergence of self-conscious emotion in adolescence. Psychol Sci 2013, 24: 1554–1562.

    Article  PubMed  Google Scholar 

  57. Izuma K, Saito DN, Sadato N. The roles of the medial prefrontal cortex and striatum in reputation processing. Soc Neurosci 2010, 5: 133.

    Article  Google Scholar 

  58. Brodnik Z, Double M, Jaskiw GE. Presynaptic regulation of extracellular dopamine levels in the medial prefrontal cortex and striatum during tyrosine depletion. Psychopharmacology 2013, 227: 363–371.

    Article  PubMed  CAS  Google Scholar 

  59. Middleton LS, Cass WA, Dwoskin LP. Nicotinic receptor modulation of dopamine transporter function in rat striatum and medial prefrontal cortex. J Pharmacol Exp Ther 2004, 308: 367–377.

    Article  PubMed  CAS  Google Scholar 

  60. Boly M, Perlbarg V, Marrelec G, Schabus M, Laureys S, Doyon J, et al. Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc Natl Acad Sci U S A 2012, 109(15): 5856–5861.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Monti MM, Lutkenhoff ES, Rubinov M, Boveroux P, Vanhaudenhuyse A, Gosseries O, et al. Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness. PLoS Comput Biol 2013, 9: e1003271.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Soddu A, Vanhaudenhuyse A, Bahri MA, Bruno MA, Boly M, Demertzi A, et al. Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness. Hum Brain Mapp 2012, 33: 778–796.

    Article  PubMed  Google Scholar 

  63. Fernandez-Espejo D, Soddu A, Cruse D, Palacios EM, Junque C, Vanhaudenhuyse A, et al. A role for the default mode network in the bases of disorders of consciousness. Ann Neurol 2012, 72: 335–343.

    Article  PubMed  Google Scholar 

  64. Crone JS, Soddu A, Höller Y, Vanhaudenhuyse A, Schurz M, Bergmann J, et al. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. Neuroimage Clin 2013, 4: 240–248.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Stein S, Francesco DP, Corine V, Beatrice R, Isabelle L, Thomas G, et al. Disruption of posteromedial large-scale neural communication predicts recovery from coma. Neurology 2015, 85: 2036.

    Article  Google Scholar 

  66. Qin P, Wu X, Huang Z, Duncan NW, Tang W, Wolff A, et al. How are different neural networks related to consciousness? Ann Neurol 2015, 78: 594–605.

    Article  PubMed  Google Scholar 

  67. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, Mckay DR, et al. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 2011, 23: 4022–4037.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Larsonprior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME. Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci U S A 2009, 106: 4489–4494.

    Article  Google Scholar 

  69. Martuzzi R, Ramani R, Qiu M, Rajeevan N, Constable RT. Functional connectivity and alterations in baseline brain state in humans. Neuroimage 2010, 49: 823.

    Article  PubMed  Google Scholar 

  70. Boveroux P, Vanhaudenhuyse A, Bruno MA, Noirhomme Q, Lauwick S, Luxen A, et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 2010, 113: 1038–1053.

    Article  PubMed  CAS  Google Scholar 

  71. Schrouff J, Perlbarg V, Boly M, Marrelec G, Boveroux P, Vanhaudenhuyse A, et al. Brain functional integration decreases during propofol-induced loss of consciousness. Neuroimage 2011, 57: 198–205.

    Article  PubMed  CAS  Google Scholar 

  72. Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 2009, 30: 2393–2400.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Henderson JM, Carpenter K, Cartwright H, Halliday GM. Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 2000, 123(Pt 7): 1410.

    Article  PubMed  Google Scholar 

  74. Xuereb JH, Perry RH, Candy JM, Perry EK, Marshall E, Bonham JR. Nerve cell loss in the thalamus in Alzheimer’s disease and Parkinson’s disease. Brain 1991, 114(Pt 3): 1363.

    PubMed  Google Scholar 

  75. Popken GJ, Bunney W Jr, Potkin SG, Jones EG. Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci U S A 2000, 97: 9276–9280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Maxwell WL, Mary Anne M, Smith DH, Mcintosh TK, Graham DI. Thalamic nuclei after human blunt head injury. J Neuropathol Exp Neurol 2006, 65: 478–488.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81471654, 81428013, 81371535, and 81271548), the Natural Science Foundation of Guangdong Province, China (2015A030313609), Planned Science and Technology Project of Guangzhou Municipality, China (20160402007 and 201604020184) and the Innovation Project of The Graduate School of South China Normal University. The authors express appreciation to Drs. Rhoda E. and Edmund F. Perozzi for editing assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronghao Yu or Ruiwang Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., **e, Q., Wu, X. et al. Abnormal Effective Connectivity of the Anterior Forebrain Regions in Disorders of Consciousness. Neurosci. Bull. 34, 647–658 (2018). https://doi.org/10.1007/s12264-018-0250-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-018-0250-6

Keywords

Navigation