Log in

Establishment of an optimized electroporation method for Halomonas sp. YK44 and its application in the coproduction of PHB and isobutanol

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Many Halomonas spp. thrive in high-salinity environments, and their resistance to high salt levels allows for their cultivation in non-sterile conditions. Despite their robustness and potential poly (3-hydroxybutyrate) (PHB) production capability, there are relatively few reports on the engineering of various Halomonas species, and there are still some difficulties in genetically engineering novel Halomonas strains. In particular, conjugation as a transformation method has been employed more frequently than electroporation in Halomonas; however, electroporation is necessary for the accelerated engineering of Halomonas and increased time efficiency. To touch this issue, we collected Halomonas strains and evaluated their PHB production and electroporation efficiencies resulting that the Halomonas sp. YK44 showed the highest electroporation efficiency with high PHB production among the various Halomonas strains. A series of electroporation protocol optimization experiments were conducted to identify optimal conditions for Halomonas sp. YK44 such as main culturing for 10 h, utilizing a DNA concentration of 150–200 μg/mL, and performing electroporation at 2.1 kV, followed by a washing step using 10% glycerol and a recovery period of 36 h with pBBR1MCS2. By introducing isobutanol biosynthetic genes using an optimized electroporation protocol, the highest isobutanol production was obtained at 196 mg/L with 63% PHB content simultaneously and the higher PHB production was obtained at 6.6 g/L with 152 mg/L isobutanol. Our approach showed the overall process to identify a suitable Halomonas host by applying general electroporation methods, optimizing electroporation protocols, and demonstrated the first coproduction of PHB and isobutanol in Halomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are contained within the article and Supplementary Materials.

References

  1. Mothes G, Schubert T, Harms H et al (2008) Biotechnological coproduction of compatible solutes and polyhydroxyalkanoates using the genus Halomonas. Eng Life Sci 8:658–662. https://doi.org/10.1002/elsc.200800097

    Article  CAS  Google Scholar 

  2. Lee HS, Lee HJ, Kim B et al (2022) Inhibition of cyclopropane fatty acid synthesis in the membrane of halophilic Halomonas socia CKY01 by kanamycin. Biotechnol Bioprocess Eng 27:788–796. https://doi.org/10.1007/s12257-022-0086-9

    Article  CAS  Google Scholar 

  3. Park YL, Song HS, Choi TR et al (2021) Revealing of sugar utilization systems in Halomonas sp. YLGW01 and application for poly(3-hydroxybutyrate) production with low-cost medium and easy recovery. Int J Biol Macromol 167:151–159. https://doi.org/10.1016/j.ijbiomac.2020.11.163

    Article  CAS  PubMed  Google Scholar 

  4. Tan D, Wu Q, Chen JC et al (2014) Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng 26:34–47. https://doi.org/10.1016/j.ymben.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  5. Tan D, Xue YS, Aibaidula G et al (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour Technol 102:8130–8136. https://doi.org/10.1016/j.biortech.2011.05.068

    Article  CAS  PubMed  Google Scholar 

  6. Ling C, Qiao GQ, Shuai BW et al (2019) Engineering self-flocculating Halomonas campaniensis for wastewaterless open and continuous fermentation. Biotechnol Bioeng 116:805–815. https://doi.org/10.1002/bit.26897

    Article  CAS  PubMed  Google Scholar 

  7. Fu XZ, Tan D, Aibaidula G et al (2014) Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng 23:78–91. https://doi.org/10.1016/j.ymben.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  8. Ma H, Zhao Y, Huang W et al (2020) Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine. Nat Commun 11:3313. https://doi.org/10.1038/s41467-020-17223-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Du H, Zhao Y, Wu F et al (2020) Engineering Halomonas bluephagenesis for L-Threonine production. Metab Eng 60:119–127. https://doi.org/10.1016/j.ymben.2020.04.004

    Article  CAS  PubMed  Google Scholar 

  10. Jiang XR, Yan X, Yu LP et al (2021) Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis. Nat Commun 12:1513. https://doi.org/10.1038/s41467-021-21632-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li T, Guo YY, Qiao GQ et al (2016) Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate. ACS Synth Biol 5:1264–1274. https://doi.org/10.1021/acssynbio.6b00105

    Article  CAS  PubMed  Google Scholar 

  12. Vargas C, Fernández-Castillo R, Cánovas D et al (1995) Isolation of cryptic plasmids from moderately halophilic eubacteria of the genus Halomonas. Characterization of a small plasmid from H. elongata and its use for shuttle vector construction. Mol Gen Genet 246:411–418. https://doi.org/10.1007/BF00290444

    Article  CAS  PubMed  Google Scholar 

  13. Harris JR, Lundgren BR, Grzeskowiak BR et al (2016) A rapid and efficient electroporation method for transformation of Halomonas sp. O-1. J Microbiol Methods 129:127–132. https://doi.org/10.1016/j.mimet.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  14. Wang Z, Qin Q, Zheng Y et al (2021) Engineering the permeability of Halomonas bluephagenesis enhanced its chassis properties. Metab Eng 67:53–66. https://doi.org/10.1016/j.ymben.2021.05.010

    Article  CAS  PubMed  Google Scholar 

  15. Tsuji A, Takei Y, Azuma Y (2022) Establishment of genetic tools for genomic DNA engineering of Halomonas sp. KM-1, a bacterium with potential for biochemical production. Microb Cell Fact 21:122. https://doi.org/10.1186/s12934-022-01797-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen YH, Lu CW, Shyu YT et al (2017) Revealing the saline adaptation strategies of the halophilic bacterium Halomonas beimenensis through high-throughput omics and transposon mutagenesis approaches. Sci Rep 7:13037. https://doi.org/10.1038/s41598-017-13450-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cadoret F, Soscia C, Voulhoux R (2014) Gene transfer: transformation/electroporation. Methods Mol Biol 1149:11–15. https://doi.org/10.1007/978-1-4939-0473-0_2

    Article  CAS  PubMed  Google Scholar 

  18. Tan L, Yang G, Yoneyama Y et al (2015) Iso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts. Appl Catal A Gen 505:141–149. https://doi.org/10.1016/j.apcata.2015.08.002

    Article  CAS  Google Scholar 

  19. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89. https://doi.org/10.1038/nature06450

    Article  CAS  PubMed  Google Scholar 

  20. Seo HM, Jeon JM, Lee JH et al (2016) Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural. J Ind Microbiol Biotechnol 43:37–44. https://doi.org/10.1007/s10295-015-1718-2

    Article  CAS  PubMed  Google Scholar 

  21. Lane S, Zhang Y, Yun EJ et al (2020) Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae. Biotechnol Bioeng 117:372–381. https://doi.org/10.1002/bit.27202

    Article  CAS  PubMed  Google Scholar 

  22. Lu J, Brigham CJ, Gai CS et al (2012) Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol 96:283–297. https://doi.org/10.1007/s00253-012-4320-9

    Article  CAS  PubMed  Google Scholar 

  23. Brigham CJ, Gai CS, Lu J et al (2013) Engineering Ralstonia eutropha for production of isobutanol from CO2, H2, and O2. In: Lee J (ed) Advanced biofuels and bioproducts. Springer, New York

    Google Scholar 

  24. Miao R, **e H, Lindblad P (2018) Enhancement of photosynthetic isobutanol production in engineered cells of Synechocystis PCC 6803. Biotechnol Biofuels 11:267. https://doi.org/10.1186/s13068-018-1268-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeon JM, Park H, Seo HM et al (2015) Isobutanol production from an engineered Shewanella oneidensis MR-1. Bioprocess Biosyst Eng 38:2147–2154. https://doi.org/10.1007/s00449-015-1454-z

    Article  CAS  PubMed  Google Scholar 

  26. Li T, Elhadi D, Chen GQ (2017) Co-production of microbial polyhydroxyalkanoates with other chemicals. Metab Eng 43:29–36. https://doi.org/10.1016/j.ymben.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  27. Liu Q, Ouyang SP, Kim J et al (2007) The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum. J Biotechnol 132:273–279. https://doi.org/10.1016/j.jbiotec.2007.03.014

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J, Hao N, Chen GQ (2006) Effect of expressing polyhydroxybutyrate synthesis genes (phbCAB) in Streptococcus zooepidemicus on production of lactic acid and hyaluronic acid. Appl Microbiol Biotechnol 71:222–227. https://doi.org/10.1007/s00253-005-0164-x

    Article  CAS  PubMed  Google Scholar 

  29. Carlson RP, Oshota O, Shipman M et al (2016) Integrated molecular, physiological and in silico characterization of two Halomonas isolates from industrial brine. Extremophiles 20:261–274. https://doi.org/10.1007/s00792-015-0806-6

    Article  CAS  PubMed  Google Scholar 

  30. Song HS, Jeon JM, Bhatia SK et al (2020) Enhanced isobutanol production by co-production of polyhydroxybutyrate and cofactor engineering. J Biotechnol 320:66–73. https://doi.org/10.1016/j.jbiotec.2020.06.017

    Article  CAS  PubMed  Google Scholar 

  31. Brynildsen MP, Liao JC (2009) An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol Syst Biol 5:277. https://doi.org/10.1038/msb.2009.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jung HJ, Kim SH, Cho DH et al (2022) Finding of novel galactose utilizing Halomonas sp. YK44 for polyhydroxybutyrate (PHB) production. Polym (Basel) 14:5407. https://doi.org/10.3390/polym14245407

    Article  CAS  Google Scholar 

  33. Park YL, Bhatia SK, Gurav R et al (2020) Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. Int J Biol Macromol 154:929–936. https://doi.org/10.1016/j.ijbiomac.2020.03.129

    Article  CAS  PubMed  Google Scholar 

  34. Cho JY, Kim SH, Jung HJ et al (2022) Finding a benign plasticizer to enhance the microbial degradation of polyhydroxybutyrate (PHB) evaluated by PHB degrader microbulbifer sp. SOL66. Polym. (Basel) 14:3625. https://doi.org/10.3390/polym14173625

    Article  CAS  Google Scholar 

  35. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145. https://doi.org/10.1093/nar/16.13.6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi TR, Jeon JM, Bhatia SK et al (2020) Production of low molecular weight P(3HB-co-3HV) by butyrateacetoacetate CoA-transferase (cftAB) in Escherichia coli. Biotechnol Bioprocess Eng 25:279–286. https://doi.org/10.1007/s12257-019-0366-1

    Article  CAS  Google Scholar 

  37. Bhatia SK, Gurav R, Choi TR et al (2019) Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour Technol 271:306–315. https://doi.org/10.1016/j.biortech.2018.09.122

    Article  CAS  PubMed  Google Scholar 

  38. Lee HJ, Kim B, Kim S et al (2022) Controlling catabolite repression for isobutanol production using glucose and xylose by overexpressing the xylose regulator. J Biotechnol 359:21–28. https://doi.org/10.1016/j.jbiotec.2022.09.012

    Article  CAS  PubMed  Google Scholar 

  39. Chen X, Yin J, Ye J et al (2017) Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Bioresour Technol 244:534–541. https://doi.org/10.1016/j.biortech.2017.07.149

    Article  CAS  PubMed  Google Scholar 

  40. Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187. https://doi.org/10.1016/0076-6879(91)94015-5

    Article  CAS  PubMed  Google Scholar 

  41. Haynes JA, Britz ML (1990) The effect of growth conditions of Corynebacterium glutamicum on the transformation frequency obtained by electroporation. J Gen Microbiol 136:255–263. https://doi.org/10.1099/00221287-136-2-255

    Article  CAS  Google Scholar 

  42. Fiedler S, Wirth R (1988) Transformation of bacteria with plasmid DNA by electroporation. Anal Biochem 170:38–44. https://doi.org/10.1016/0003-2697(88)90086-3

    Article  CAS  PubMed  Google Scholar 

  43. Chassy BM, Mercenier A, Flickinger J (1988) Transformation of bacteria by electroporation. Trends Biotechnol 6:303–309. https://doi.org/10.1016/0167-7799(88)90025-X

    Article  CAS  Google Scholar 

  44. Prasanna G, Panda T (1997) Electroporation: basic principles, practical considerations and applications in molecular biology. Bioprocess Eng 16:261–264. https://doi.org/10.1007/s004490050319

    Article  CAS  Google Scholar 

  45. Sharma RC, Schimke RT (1996) Preparation of electrocompetent E. coli using salt-free growth medium. Biotechniques 20:42–44. https://doi.org/10.2144/96201bm08

    Article  CAS  PubMed  Google Scholar 

  46. Vandrich J, Pfeiffer F, Alfaro-Espinoza G et al (2020) Contribution of mechanosensitive channels to osmoadaptation and ectoine excretion in Halomonas elongata. Extremophiles 24:421–432. https://doi.org/10.1007/s00792-020-01168-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kawata Y, Ando H, Matsushita I et al (2014) Efficient secretion of (R)-3-hydroxybutyric acid from Halomonas sp. KM-1 by nitrate fed-batch cultivation with glucose under microaerobic conditions. Bioresour Technol 156:400–403. https://doi.org/10.1016/j.biortech.2014.01.073

    Article  CAS  PubMed  Google Scholar 

  48. Qin Q, Ling C, Zhao Y et al (2018) CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metab Eng 47:219–229. https://doi.org/10.1016/j.ymben.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  49. Ye JW, Chen GQ (2021) Halomonas as a chassis. Essays Biochem 65:393–403. https://doi.org/10.1042/EBC20200159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the KU Research Professor Program of Konkuk University, Seoul, South Korea. This research was supported by the National Research Foundation of Korea (NRF), the Ministry of Science and ICT (NRF-2022R1A2C2003138, NRF-2022M3I3A1082545), and the R&D Program of MOTIE/KEIT (Grant No. 20009508 and 20014350).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shashi Kant Bhatia or Yung-Hun Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H.J., Shin, Y., Hwang, J.H. et al. Establishment of an optimized electroporation method for Halomonas sp. YK44 and its application in the coproduction of PHB and isobutanol. Biotechnol Bioproc E 29, 339–351 (2024). https://doi.org/10.1007/s12257-024-00055-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-024-00055-z

Keywords

Navigation