Log in

Cryopreservation Engineering Strategies for Mass Production of Adipose-Derived Stem Cells

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cryopreservation is required for the manufacturing and large-scale production of adipose-derived stem cell (ADSC)-mediated therapeutics. For both autologous ADSC products for patient-specific therapeutics and allogenic components for mass productions, the process of cryopreservation is inevitable. Additionally, other biologics/biosimilar production processes using human/animal cell populations also often require cryopreservation. In order to keep activity, functionality, and stemness of progenitor ADSC products, a precise control in cryopreservation is necessary. In terms of Good Manufacturing Practice for ADSC produces, related quality control issues usually include maintenance of purity of cellular products, variation in production batches, trophic modulation by incorporated cytokines/growth factors, and consistency of bifunctionality and stem-niche of ADSCs. Therefore, a series of studies have recently investigated the effect of cryopreservation conditions on downstream cellular activities. Efficient control in a variety of parameters for cryopreservation could provide reproducible mass-manufacturing compliant protocols and minimize the phenotypic/functional changes of ADSCs. This review summarizes the recent development in engineered cryopreservation techniques in the manufacturing of ADSC-based cell products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADSC:

Adipose-derived stem cell

MSC:

Mesenchymal stem cell

BMSC:

Bone marrow-derived mesenchymal stem cell

DMSO:

Dimethyl sulfoxide

LA:

Lipoaspirates

ECM:

Extra cellular matrix

Tre:

Trehalose

EG:

Ethylene glycol

PVA:

Polyvinyl alcohol

EGTA:

Ethylene glycol tetraacetic acid

GNPs:

Genipin-crosslinked Pluronic F127-chitosan nanoparticles

FBS:

Fetal bovine serum

PL:

Platelet lysate

HSA:

Human serum albumin

HS:

Human serum

KSR:

Knockout serum replacement

References

  1. Utsunomiya, T., M. Shimada, S. Imura, Y. Morine, T. Ikemoto, H. Mori, J. Hanaoka, S. Iwahashi, Y. Saito, and H. Iwaguro (2011) Human adipose-derived stem cells: potential clinical applications in surgery. Surg. Today. 41: 18–23.

    Article  PubMed  Google Scholar 

  2. Cowan, C. M., Y. Y. Shi, O. O. Aalami, Y. F. Chou, C. Mari, R. Thomas, N. Quarto, C. H. Contag, B. Wu, and M. T. Longaker (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 22: 560–567.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu, Y., T. Liu, K. Song, X. Fan, X. Ma, and Z. Cui (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem. Funct. 26: 664–675.

    Article  CAS  PubMed  Google Scholar 

  4. Kern, S., H. Eichler, J. Stoeve, H. Kluter, and K. Bieback (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 24: 1294–1301.

    Article  CAS  PubMed  Google Scholar 

  5. Monaco, E., M. Bionaz, S. Rodriguez-Zas, W. L. Hurley, and M. B. Wheeler (2012) Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS One. 7: e32481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7: 211–228.

    Article  CAS  PubMed  Google Scholar 

  7. Cho, H., D. Kim, and K. Kim (2018) Engineered co-culture strategies using stem cells for facilitated chondrogenic differentiation and cartilage repair. Biotechnol. Bioprocess Eng. 23: 261–270.

    Article  CAS  Google Scholar 

  8. Gimble, J. M., A. J. Katz, and B. A. Bunnell (2007) Adipose-derived stem cells for regenerative medicine. Circ. Res. 100: 1249–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan, B. Z. and J. Wang (2014) The regulatory sciences for stem cell-based medicinal products. Front. Med. 8: 190–200.

    Article  PubMed  Google Scholar 

  10. Jossen, V., C. van den Bos, R. Eibl, and D. Eibl (2018) Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl. Microbiol. Biot. 102: 3981–3994.

    Article  CAS  Google Scholar 

  11. Syed, B. A. and J. B. Evans (2013) Stem cell therapy market. Nat. Rev. Drug Discov. 12: 185–186.

    Article  CAS  PubMed  Google Scholar 

  12. Hunt, C. J. (2011) Cryopreservation of human stem cells for clinical application: a review. Transfus. Med. Hemother. 38: 107–123.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nazarpour, R., E. Zabihi, E. Alijanpour, Z. Abedian, H. Mehdizadeh, and F. Rahimi (2012) Optimization of human peripheral blood mononuclear cells (PBMCs) cryopreservation. Int. J. Mol. Cell. Med. 1: 88–93.

    PubMed  PubMed Central  Google Scholar 

  14. Asghar, W., R. El Assal, H. Shafiee, R. M. Anchan, and U. Demirci (2014) Preserving human cells for regenerative, reproductive, and transfusion medicine. Biotechnol. J. 9: 895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hebling, J., L. Bianchi, F. G. Basso, D. L. Scheffel, D. G. Soares, M. R. O. Carrilho, D. H. Pashley, L. Tjaderhane, and C. A. de Souza Costa (2015) Cytotoxicity of dimethyl sulfoxide (DMSO) in direct contact with odontoblast-like cells. Den. Mater. 31: 399–405.

    Article  CAS  Google Scholar 

  16. Matsumura, K., F. Hayashi, T. Nagashima, and S. H. Hyon (2013) Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide. J. Biomter. Sci. Polym. Ed. 24: 1484–1497.

    Article  CAS  Google Scholar 

  17. Arakawa, T., Y. Kita, and S. N. Timasheff (2007) Protein precipitation and denaturation by dimethyl sulfoxide. Biophys. Chem. 131: 62–70.

    Article  CAS  PubMed  Google Scholar 

  18. Hanslick, J. L., K. Lau, K. K. Noguchi, J. W. Olney, C. F. Zorumski, S. Mennerick, and N. B. Farber (2009) Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the develo** central nervous system. Neurobiol. Dis. 34: 1–10.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, C., R. **ao, Y. L. Cao, and H. Y. Yin (2017) Evaluation of human platelet lysate and dimethyl sulfoxide as cryoprotectants for the cryopreservation of human adipose-derived stem cells. Biochem. Biophys. Res. Commun. 491: 198–203.

    Article  CAS  PubMed  Google Scholar 

  20. Djouad, F., B. Delorme, M. Maurice, C. Bony, F. Apparailly, P. Louis-Plence, F. Canovas, P. Charbord, D. Noel, and C. Jorgensen (2007) Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis Res. Ther. 9: R33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rao, W., H. Huang, H. Wang, S. Zhao, J. Dumbleton, G. Zhao, and X. He (2015) Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl. Mater. Interfaces. 7: 5017–5028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shah, F. S., J. Li, F. Zanata, J. L. Curley, E. C. Martin, X. Wu, M. Dietrich, R. V. Devireddy, J. W. Wade, and J. M. Gimble (2015) The relative functionality of freshly isolated and cryopreserved human adipose-derived stromal/stem cells. Cells. Tissues Organs. 201: 436–444.

    Article  CAS  PubMed  Google Scholar 

  23. Chetty, S., F. W. Pagliuca, C. Honore, A. Kweudjeu, A. Rezania, and D. A. Melton (2013) A simple tool to improve pluripotent stem cell differentiation. Nat. Methods. 10: 553–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choudhery, M. S., M. Badowski, A. Muise, J. Pierce, and D. T. Harris (2014) Cryopreservation of whole adipose tissue for future use in regenerative medicine. J. Surg. Res. 187: 24–35.

    Article  CAS  PubMed  Google Scholar 

  25. Yong, K. W., W. K. Z. Wan Safwani, F. Xu, X. Zhang, J. R. Choi, W. A. B. W. Abas, S. Z. Omar, M. A. N. Azmi, K. H. Chua, and B. **guan-Murphy (2017) Assessment of tumourigenic potential in long-term cryopreserved human adipose-derived stem cells. J. Tissue Eng. Regen. Med. 11: 2217–2226.

    Article  CAS  PubMed  Google Scholar 

  26. Pollock, K., D. Sumstad, D. Kadidlo, D. H. McKenna, and A. Hubel (2015) Clinical mesenchymal stromal cell products undergo functional changes in response to freezing. Cytotherapy. 17: 38–45.

    Article  PubMed  Google Scholar 

  27. Wang, W. Z., X. H. Fang, S. J. Williams, L. L. Stephenson, R. C. Baynosa, N. Wong, K. T. Khiabani, and W. A. Zamboni (2013) The effect of lipoaspirates cryopreservation on adipose-derived stem cells. Aesthetic Surg. J. 33: 1046–1055.

    Article  Google Scholar 

  28. Oedayrajsingh-Varma, M. J., S. M. van Ham, M. Knippenberg, M. N. Helder, J. Klein-Nulend, T. E. Schouten, M. J. P. F. Ritt, and F. J. van Milligen (2006) Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 8: 166–177.

    Article  CAS  PubMed  Google Scholar 

  29. Lin, T. M., J. L. Tsai, S. D. Lin, C. S. Lai, and C. C. Chang (2005) Accelerated growth and prolonged lifespan of adipose tissue-derived human mesenchymal stem cells in a medium using reduced calcium and antioxidants. Stem Cells Dev. 14: 92–102.

    Article  CAS  PubMed  Google Scholar 

  30. Tatone, C., G. Di Emidio, M. Vento, R. Ciriminna, and P. G. Artini (2010) Cryopreservation and oxidative stress in reproductive cells. Gynecol. Endocrinol. 26: 563–567.

    Article  PubMed  Google Scholar 

  31. James, A. W., B. Levi, E. R. Nelson, M. Peng, G. W. Commons, M. Lee, B. Wu, and M. T. Longaker (2011) Deleterious effects of freezing on osteogenic differentiation of human adipose-derived stromal cells in vitro and in vivo. Stem Cells Dev. 20: 427–439.

    Article  CAS  PubMed  Google Scholar 

  32. Irioda, A. C., R. Cassilha, L. Zocche, J. C. Francisco, R. C. Cunha, P. E. Ferreira, L. C. Guarita-Souza, R. J. Ferreira, B. F. Mogharbel, V. N. S. Garikipati, D. Souza, M. P. Beltrame, and K. A. T. de Carvalho (2016) Human adipose-derived mesenchymal stem cells cryopreservation and thawing decrease alpha4-integrin expression. Stem Cells Int. 2016: 2562718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gonda, K., T. Shigeura, T. Sato, D. Matsumoto, H. Suga, K. Inoue, N. Aoi, H. Kato, K. Sato, S. Murase, I. Koshima, and K. Yoshimura (2008) Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast. Reconstr. Surg. 121: 401–410.

    Article  CAS  PubMed  Google Scholar 

  34. Devitt, S. M., C. M. Carter, R. Dierov, S. Weiss, R. P. Gersch, and I. Percec (2015) Successful isolation of viable adipose-derived stem cells from human adipose tissue subject to long-term cryopreservation: positive implications for adult stem cell-based therapeutics in patients of advanced age. Stem. Cells Int. 2015: 146421.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Qi, W., D. Ding, and R. J. Salvi (2008) Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures. Hear Res. 236: 52–60.

    Article  CAS  PubMed  Google Scholar 

  36. Syme, R., M. Bewick, D. Stewart, K. Porter, T. Chadderton, and S. Gluck (2004) The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects, and toxicity. Biol. Blood Marrow Transplant. 10: 135–141.

    Article  CAS  PubMed  Google Scholar 

  37. Windrum, P., T. C. M. Morris, M. B. Drake, D. Niederwieser, and T. Ruutu (2005) Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres. Bone Marrow Transplant. 36: 601–603.

    Article  CAS  PubMed  Google Scholar 

  38. Cottone, G., S. Giuffrida, G. Ciccotti, and L. Cordone (2005) Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin. Proteins. 59: 291–302.

    Article  CAS  PubMed  Google Scholar 

  39. Crowe, J. H., F. Tablin, W. F. Wolkers, K. Gousset, N. M. Tsvetkova, and J. Ricker (2003) Stabilization of membranes in human platelets freeze-dried with trehalose. Chem. Phys. Lipids. 122: 41–52.

    Article  CAS  PubMed  Google Scholar 

  40. He, X. (2011) Thermostability of biological systems: fundamentals, challenges, and quantification. Open Biomed. Eng. J. 5: 47–73.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Crowe, J. H., L. M. Crowe, A. E. Oliver, N. Tsvetkova, W. Wolkers, and F. Tablin (2001) The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology. 43: 89–105.

    Article  CAS  PubMed  Google Scholar 

  42. Lopez, M., R. J. Bollag, J. C. Yu, C. M. Isales, and A. Eroglu (2016) Chemically defined and xeno-free cryopreservation of human adipose-derived stem cells. PLoS One. 11: e0152161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Abazari, A., L. G. Meimetis, G. Budin, S. S. Bale, R. Weissleder, and M. Toner (2015) Engineered trehalose permeable to mammalian cells. PLoS One. 10: e0130323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhang, M., H. Oldenhof, H. Sieme, and W. F. Wolkers (2016) Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation. Biochim. Biophys. Acta. 1858: 1400–1409.

    Article  CAS  PubMed  Google Scholar 

  45. Dovgan, B., A. Barlic, M. Knezevic, and D. Miklavcic (2017) Cryopreservation of human adipose-derived stem cells in combination with trehalose and reversible electroporation. J. Membr. Biol. 250: 1–9.

    Article  CAS  PubMed  Google Scholar 

  46. Park, H. J., W. Y. Lee, S. Y. Chai, J. S. Woo, H. J. Chung, J. K. Park, H. Song, and K. Hong (2018) Expression of insulin-like growth factor binding protein-3 and regulation of the insulin-like growth factor-I axis in pig testis. Biotechnol. Bioprocess Eng. 23: 278–285.

    Article  CAS  Google Scholar 

  47. Yoo, J. M., H. Choi, J. J. Park, S. J. Byun, and J. G. Yoo (2017) Induction of male germ cell-like lineage from chicken fetal bone marrow stem cells with chicken testis extract. Biotechnol. Bioprocess Eng. 22: 1–8.

    Article  CAS  Google Scholar 

  48. Kim, S. J., J. H. Park, J. E. Lee, J. M. Kim, J. B. Lee, S. Y. Moon, S. I. Roh, C. G. Kim, and H. S. Yoon (2004) Effects of type IV collagen and laminin on the cryopreservation of human embryonic stem cells. Stem Cells. 22: 950–961.

    Article  CAS  PubMed  Google Scholar 

  49. Matsumura, Y., M. Ujihira, S. Nogawa, K. Kimura, H. Ichikawa, and K. Mabuchi (2007) Investigation of the influence of cell density of human fibroblasts cryopreserved inside collagen sponges at various cooling rates. Cryo Letters. 28: 337–346.

    PubMed  Google Scholar 

  50. H. Cho, A. Lee, and K. Kim (2018) The effect of serum types on chondrogenic differentiation of adipose-derived stem cells. Biomater. Res. 22: 6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. van der Valk, J., K. Bieback, C. Buta, B. Cochrane, W. G. Dirks, J. Fu, J. J. Hickman, C. Hohensee, R. Kolar, M. Liebsch, F. Pistollato, M. Schulz, D. Thieme, T. Weber, J. Wiest, S. Winkler, and G. Gstraunthaler (2018) Fetal bovine serum (FBS): past — present — future. Altex. 35: 99–118.

    Article  PubMed  Google Scholar 

  52. Gstraunthaler, G., T. Lindl, and J. van der Valk (2013) A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology. 65: 791–793.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Niknejad, H., T. Deihim, H. Peirovi, and H. Abolghasemi (2013) Serum-free cryopreservation of human amniotic epithelial cells before and after isolation from their natural scaffold. Cryobiology. 67: 56–63.

    Article  CAS  PubMed  Google Scholar 

  54. Miyamoto, Y., K. Oishi, H. Yukawa, H. Noguchi, M. Sasaki, H. Iwata, and S. Hayashi (2012) Cryopreservation of human adipose tissue-derived stem/progenitor cells using the silk protein sericin. Cell Transplant. 21: 617–622.

    Article  PubMed  Google Scholar 

  55. Sasaki, M., Y. Kato, H. Yamada, and S. Terada (2005) Development of a novel serum-free freezing medium for mammalian cells using the silk protein sericin. Biotechnol. Appl. Biochem. 42: 183–188.

    Article  CAS  PubMed  Google Scholar 

  56. Escobar, C. H. and O. Chaparro (2016) Xeno-free extraction, culture, and cryopreservation of human adipose-derived mesenchymal stem cells. Stem Cells Transl. Med. 5: 358–365.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Park, S., D. R. Lee, J. S. Nam, C. W. Ahn, and H. Kim (2018) Fetal bovine serum-free cryopreservation methods for clinical banking of human adipose-derived stem cells. Cryobiology. 81: 65–73.

    Article  CAS  PubMed  Google Scholar 

  58. Wan Safwani, W. K. Z., J. R. Choi, K. W. Yong, I. Ting, N. A. Mat Adenan, and B. **guan-Murphy (2017) Hypoxia enhances the viability, growth and chondrogenic potential of cryopreserved human adipose-derived stem cells. Cryobiology. 75: 91–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1A2C1084828) and the Incheon National University Institute of Convergence Science & Technology (2016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae-hyun Kim or Kyobum Kim.

Additional information

Disclosure

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kim, J., Kwon, O.J. et al. Cryopreservation Engineering Strategies for Mass Production of Adipose-Derived Stem Cells. Biotechnol Bioproc E 26, 325–334 (2021). https://doi.org/10.1007/s12257-019-1359-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-1359-9

Keywords

Navigation