Log in

In Vitro Infectious Risk Assessment of Heliothis virescens ascovirus 3j (HvAV-3j) toward Non-target Vertebrate Cells

  • RESEARCH ARTICLE
  • Published:
Virologica Sinica

Abstract

As specific pathogens of noctuid pests, including Spodoptera exigua, S. litura, Helicoverpa armigera, and Mythimna separata, ascoviruses are suitable for the development of bioinsecticides. In this study, the infectivity of Heliothis virescens ascovirus 3j (HvAV-3j) on insect and mammalian cells was evaluated. HvAV-3j infection induced drastic morphological changes in Sf9, HzAM1, SeFB, and HaFB cells, including swelling and detachment. Notably, the latter phenomena did not occur in HvAV-3j-inoculated mammalian cells (HEK293, 7402, HePG2, PK15, ST, and TM3). MTT assays indicated that HvAV-3j inhibited the growth of host insect cells from the 6th hpi, but no effects were detected in the HvAV-3j-inoculated mammalian cells. Furthermore, viral DNA replication, gene transcription, and protein expression were investigated, and the results consistently suggested that HvAV-3j viruses were not able to replicate their genomic DNA, transcribe, or express their proteins in the non-target vertebrate cells. The HvAV-3j genes were only transcribed and expressed in the four insect cell lines. These results indicated that HvAV-3j was infectious to cells derived from S. frugiperda, S. exigua, H. armigera, and H. zea but not to cells derived from human, pig, and mouse, suggesting that ascoviruses are safe to non-target vertebrate cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arai E, Ishii K, Ishii H, Sagawa S, Makiyama N, Mizutani T, Omatsu T, Katayama Y, Kunimi Y, Inoue MN, Nakai M (2018) An ascovirus isolated from Spodoptera litura (Noctuidae: Lepidoptera) transmitted by the generalist endoparasitoid Meteorus pulchrcornis (Braconidae: Hymenoptera). J Gen Virol 99:574–584

    Article  CAS  PubMed  Google Scholar 

  • Arif BM (2005) A brief journey with insect viruses with emphasis on baculoviruses. J Invertebr Pathol 89:39–45

    Article  PubMed  Google Scholar 

  • Asgari S (2006) Replication of Heliothis virescens ascovirus in insect cell lines. Arch Virol 151:1689–1699

    Article  CAS  PubMed  Google Scholar 

  • Asgari S, Davis J, Wood D, Wilson P, McGrath A (2007) Sequence and organization of the Heliothis virescens ascovirus genome. J Gen Virol 88:1120–1132

    Article  CAS  PubMed  Google Scholar 

  • Asgari S, Bideshi DK, Bigot Y, Federici BA, Cheng X (2017) ICTV report consortium, ICTV virus taxonomy profile: Ascoviridae. J Gen Virol 98:4–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bideshi DK, Tan KP, Bigot Y, Federici BA (2005) A viral caspase contributes to modified apoptosis for virus transmission. Gene Dev 19:1416–1421

    Article  CAS  PubMed  Google Scholar 

  • Bigot Y, Rabouille A, Sizaret PY, Hamelin MH, Periquet G (1997) Particle and genomic characteristics of a new member of the Ascoviridae: Diadromus pulchellus ascovirus. J Gen Virol 78:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Carbonell LF, Klowden MJ, Miller LK (1985) Baculovirus mediated expression of bacterial genes in dipteran and mammalian cells. J Virol 56:153–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carner GR, Hudson JS (1983) Histopathology of virus-like particles in Heliothis spp. J Invertebr Pathol 41:238–249

    Article  Google Scholar 

  • Chen ZS, Hou DH, Cheng XW, Wang X, Huang GH (2018) Genomic analysis of a novel isolate Heliothis virescens ascovirus 3i (HvAV-3i) and identification of ascoviral repeat ORFs (aros). Arch Virol 163:2849–2853

    Article  CAS  PubMed  Google Scholar 

  • Chen ZS, Cheng XW, Wang X, Hou DH, Huang GH (2019) Proteomic analysis of the Heliothis virescens ascovirus 3i (HvAV-3i) virion. J Gen Virol 100:301–307

    Article  CAS  PubMed  Google Scholar 

  • Cheng XW, Carner GR, Brown TM (1999) Circular configuration of the genome of ascoviruses. J Gen Virol 80:1537–1540

    Article  CAS  PubMed  Google Scholar 

  • Cheng XW, Carner GR, Arif BM (2000) A new ascovirus from Spodoptera exigua and its relatedness to the isolate from Spodoptera frugiperda. J Gen Virol 81:3083–3092

    Article  CAS  PubMed  Google Scholar 

  • Cheng XW, Wang LH, Carner GR, Arif BM (2005) Characterization of three ascovirus isolates from cotton insects. J Invertebr Pathol 89:193–202

    Article  CAS  PubMed  Google Scholar 

  • Federici BA (1982) A new type of insect pathogen in larvae of the clover cutworm, Scotogramma trifolii. J Invertebr Pathol 40:41–54

    Article  Google Scholar 

  • Federici BA (1983) Enveloped double-stranded DNA insect virus with novel structure and cytopathology. Proc Natl Acad Sci USA 80:7664–7668

    Article  CAS  PubMed  Google Scholar 

  • Federici BA, Govindarajan R (1990) Comparative histopathology larval of three ascovirus noctuids isolates in larval noctuids. J Invertebr Pathol 56:300–311

    Article  CAS  PubMed  Google Scholar 

  • Federici BA, Vlak JM, Hamm JJ (1990) Comparative study of virion structure, protein composition and genomic DNA of three ascovirus isolates. J Gen Virol 71:1661–1668

    Article  CAS  PubMed  Google Scholar 

  • Federici BA, Bideshi DK, Tan Y, Spears T, Bigot Y (2009) Ascoviruses: superb manipulators of apoptosis for viral replication and transmission. Curr Top Microbiol 328:171–196

    CAS  Google Scholar 

  • Govindarajan R, Federici BA (1990) Ascovirus infectivity and effects of infection on the growth and development of noctuid larvae. J Invertebr Pathol 56:291–299

    Article  CAS  PubMed  Google Scholar 

  • Groener A, Granados RR, Burand JP (1984) Interaction of Autographa californica nuclear polyhedrosis virus with two nonpermissive cell lines. Intervirology 21:203–209

    Article  Google Scholar 

  • Hamm JJ, Pair SD, Marti OG (1986) Incidence and host range of a new ascovirus isolated from fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla Entomol 69:524–531

    Article  Google Scholar 

  • Huang GH, Garretson TA, Cheng XH, Holztrager MS, Li SJ, Wang X, Cheng XW (2012a) Phylogenetic position and replication kinetics of Heliothis virescens ascovirus 3 h (HvAV-3h) isolated from Spodoptera exigua. PLoS ONE 7:e40225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang GH, Wang YS, Wang X, Garretson TA, Dai LY, Zhang CX, Cheng XW (2012b) Genomic sequence of Heliothis virescens ascovirus 3 g isolated from Spodoptera exigua. J Virol 86:12467–12468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang GH, Hou DH, Wang M, Chen XW, Hu Z (2017) Genome analysis of Helithis virescens ascovirus 3h isolated from China. Virol Sin 32:147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E, Jeon IS, Kim JW, Kim J, Jung HS, Lee SJ (2007) An MTT-based method for quantification of periodontal ligament cell viability. Oral Dis 13:495–499

    Article  CAS  PubMed  Google Scholar 

  • Li SJ, Wang X, Zhou ZS, Zhu J, Hu J, Zhao YP, Zhou GW, Huang GH (2013) A comparison of growth and development of three major agricultural insect pests infected with Heliothis virescens ascovirus 3 h (HvAV-3h). PLoS ONE 8:e85704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SJ, Hopkins RJ, Zhao YP, Zhang YX, Hu J, Chen XY, Xu Z, Huang GH (2016) Imperfection works: survival, transmission and persistence in the system of Helithis virescens ascovirus 3h (HvAV-3h), Microplitis similis and Spodoptera exigua. Sci Rep 16:21296

    Article  CAS  Google Scholar 

  • Liu YY, **an WF, Xue J, Wei YL, Cheng XW, Wang X (2018) Complete Genome Sequence of a Renamed Isolate, Trichoplusia ni ascovirus 6b, from the United States. Genome Announc 6:e00148–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao XY, Choi JY, Kim WJ, Lee JH, Liu Q, Kim SE, An SB, Lee SH, Woo SD, ** BR, Je YH (2013) The Autographa californica multiple nucleopolyhedrovirus ORF78 is essential for budded virus production and general occlusion body formation. J Virol 87:8441–8450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiem SM (1997) Prospects for altering host range for baculovirus bioinsecticides. Curr Opin Biotechnol 8:317–322

    Article  CAS  PubMed  Google Scholar 

  • Tjia ST, Altenschildesche GM, Doerfler W (1983) Autographa californica nuclear polyhedrosis virus (AcNPV) DNA does not persist in mass cultures of mammalian cells. Virology 125:107–117

    Article  CAS  PubMed  Google Scholar 

  • Volkman LE, Goldsmith PA (1983) In vitro survey of Autographa californica nuclear polyhedrosis virus interaction with nontarget vertebrate host cells. Appl Environ Microbiol 45:1085–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei YL, Hu J, Li SJ, Chen ZS, Cheng XW, Huang GH (2014) Genome sequence and organization analysis of Helithis virecens ascovirus 3f isolated form a Helicoverpa zea larva. J Invertebr Pathol 122:40–43

    Article  CAS  PubMed  Google Scholar 

  • Wu WB, Lin TH, Pan LJ, Yu M, Li ZF, Pang Y, Yang K (2006) Autographa californica multiple nucleopolyhedrovirus nucleocapsid assembly is interrupted upon deletion of the 38 K gene. J Virol 80:11475–11485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Xu J, Liu Q, Liu TX, Wang D (2015) Ha83, a chitin binding domain encoding gene, is important to Helicoverpa armigera nucleopolyhedrovirus budded virus production and occlusion body assembling. Sci Rep 5:11088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, He L, Ou-Yang YY, Huang GH (2018a) Preparation and molecular characterization of a polyclonal antibody as an efficient cutworm reference protein. J Asia Pac Entomol 21:786–792

    Article  Google Scholar 

  • Yu H, Li ZQ, He L, Ou-Yang YY, Ni L, Huang GH (2018b) Response analysis of host Spodoptera exigua larvae to infection by Heliothis virescens ascovirus 3 h (HvAV-3h) via transcriptome. Sci Rep 8:5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang YA, Qin QL, Li X, Miao L, Wang YZ, Qu LJ, Zhang AJ, Yang Q (2009) A cell strain cloned from Spodoptera exigua cell line (IOZCAS-Spex-II) highly susceptible to S. exigua nucleopolyhedrovirus infection. In Vitro Cell Dev Biol Anim 45: 201–204

    Article  CAS  PubMed  Google Scholar 

  • Zhu SM, Wang W, Wang Y, Yuan MJ, Yang K (2013) The baculovirus core gene ac83 is required for nucleocapsid assembly and per os infectivity of Autographa californica nucleopolyhedrovirus. J Virol 87:10573–10586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Zhi-Hong Hu (Wuhan Institute of Virology, Chinese Academy of Sciences) for generously providing HzAM1, Sf9 cells and E. coli strain of DH10Bac; Dr. Qi-Lian Qin (Institute of Zoology, Chinese Academy of Sciences) for generously providing SeFB cells; Dr. Jian-Hong Li (College of Plant Science & Technology, Huazhong Agricultural University) for kindly providing HaFB cells; Dr. Si Qin (College of Food Science and Technology, Hunan Agriculture University) kindly giving HePG2 cells; Dr. Yun Liu (Zunyi Medical University) generously providing 7402 cells; Dr. Zhong Ding (College of Plant Protection, Hunan Agriculture University) generously providing HEK293 cells; Dr. Qing Yang (College of Veterinary Medicine, Hunan Agriculture University) generously providing PK15, ST, and TM3 cells. This work was supported by the National Natural Science Foundation of China (31700141, 31872027) and the grant of Chinese Post-doctoral special funding (2018T110832) and Program to supporting research activities of female researchers in Ministry of education, culture, sports, science and technology-Japan.

Author information

Authors and Affiliations

Authors

Contributions

HY, MN and GHH contributed to the study design. HY, YYOY and NL performed the experiments. HY, MN and GHH contributed reagents. HY and YYOY analyzed the data. HY, YYOY, MN and GHH wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Madoka Nakai or Guo-Hua Huang.

Ethics declarations

Conflict of interest

The authors declared no competing financial interests in this paper.

Animal and Human Rights Statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Ou-Yang, YY., Li, N. et al. In Vitro Infectious Risk Assessment of Heliothis virescens ascovirus 3j (HvAV-3j) toward Non-target Vertebrate Cells. Virol. Sin. 34, 423–433 (2019). https://doi.org/10.1007/s12250-019-00113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-019-00113-4

Keywords

Navigation