Log in

Development of HBsAg-binding aptamers that bind HepG2.2.15 cells via HBV surface antigen

  • Published:
Virologica Sinica

Abstract

Hepatitis B virus surface antigen (HBsAg), a specific antigen on the membrane of Hepatitis B virus (HBV)-infected cells, provides a perfect target for therapeutic drugs. The development of reagents with high affinity and specificity to the HBsAg is of great significance to the early-stage diagnosis and treatment of HBV infection. Herein, we report the selection of RNA aptamers that can specifically bind to HBsAg protein and HBsAg-positive hepatocytes. One high affinity aptamer, HBs-A22, was isolated from an initial 115 mer library of ∼1.1×1015 random-sequence RNA molecules using the SELEX procedure. The selected aptamer HBs-A22 bound specifically to hepatoma cell line HepG2.2.15 that expresses HBsAg but did not bind to HBsAg-devoid HepG2 cells. This is the first reported RNA aptamer which could bind to a HBV specific antigen. This newly isolated aptamer could be modified to deliver imaging, diagnostic, and therapeutic agents targeted at HBV-infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bock L C, Griffin L C, Latham J A, et al. 1992. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 355(6360): 564–566.

    Article  CAS  PubMed  Google Scholar 

  2. Brody E N, Gold L. 2000. Aptamers as therapeutic and diagnostic agents. J Biotechnol, 74(1): 5–13.

    CAS  PubMed  Google Scholar 

  3. Chapman J A, Beckey C. 2006. Pegaptanib: A novel approach to ocular neovascularization. Ann Pharmacother, 40(7–8): 1322–1326.

    CAS  PubMed  Google Scholar 

  4. Chu C M, Liaw Y F. 1987. Intrahepatic distribution of hepatitis B surface and core antigens in chronic hepatitis B virus infection. Hepatocyte with cytoplasmic/membranous hepatitis B core antigen as a possible target for immune hepatocytolysis. Gastroenterology, 92: 220–225.

    CAS  PubMed  Google Scholar 

  5. Chu T C, Twu K Y, Ellington A D, et al. 2006. Aptamer mediated siRNA delivery. Nucleic Acids Res, 34(10): e73.

    Article  PubMed  Google Scholar 

  6. Connell G J, Illangesekare M, Yarus M. 1993. Three small ribooligonucleotides with specific arginine sites. Biochemistry, 1; 32(21): 5497–502.

    Article  CAS  PubMed  Google Scholar 

  7. Dienstag J L. 2006. Looking to the future: new agents for chronic hepatitis B. Am J Gastroenterol, 101: S19–S25.

    Article  CAS  PubMed  Google Scholar 

  8. Ellington A D, Szostak J W. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature, 30; 346(6287): 818–822.

    Article  CAS  PubMed  Google Scholar 

  9. Gish R G. 2005. Current treatment and future directions in the management of chronic hepatitis B viral infection. Clin Liver Dis, 9: 541–565.

    Article  PubMed  Google Scholar 

  10. Guan R. 2005. Treatment of chronic hepatitis B infection using interferon. Med J Malaysia, 60: 28–33.

    PubMed  Google Scholar 

  11. Hicke B J, Marion C, Chang Y F, et al. 2001. Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem, 28; 276(52): 48644–48654.

    Article  CAS  PubMed  Google Scholar 

  12. Hicke B J, Stephens A W. 2000. Escort aptamers: a delivery service for diagnosis and therapy. J Clin Invest, 106(8): 923–928.

    Article  CAS  PubMed  Google Scholar 

  13. Jayasena S D. 1999. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem, 45(9): 1628–1650.

    CAS  PubMed  Google Scholar 

  14. Jenison R D, Jennings S D, Walker D W, et al. 1998. Oligonucleotide inhibitors of P-selectin-dependent neutrophil-platelet adhesion, Antisense Nucleic Acid Drug Dev, 8(4): 265–279.

    CAS  PubMed  Google Scholar 

  15. Khaled A, Guo S, Li F, et al. 2005. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Letters, 5(9): 1797–1808.

    Article  CAS  PubMed  Google Scholar 

  16. Kojima T. 1982. Immune electron microscopic study of hepatitis B virus associated antigens in hepatocytes. Gastroenterol Jpn, 17: 559–575.

    CAS  PubMed  Google Scholar 

  17. Liu C J, Liou J M, Chen D S, et al. 2005. Natural course and treatment of dual hepatitis B virus and hepatitis C virus infections. J Formos Med Assoc, 104: 783–791.

    PubMed  Google Scholar 

  18. Marcellin P, Asselah T, Boyer N. 2005. Treatment of chronic hepatitis B. J Viral Hepat, 12: 333–345.

    Article  CAS  PubMed  Google Scholar 

  19. McNamara J O 2nd, Andrechek E R, Wang Y, et al. 2006. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol, 24(8): 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  20. Ng E W, Shima D T, Calias P, et al. 2006. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov, 5(2): 123–132.

    Article  CAS  PubMed  Google Scholar 

  21. Ocama P, Opio C K, Lee W M. 2005. Hepatitis B virus infection: current status. Am J Med, 118: 1413.

    Article  PubMed  Google Scholar 

  22. Onishi S, Saibara T, Ito K. 1985. Hepatitis B surface antigen specific cytotoxic T lymphocyte activity in hepatitis B virus infection. Gastroenterol Jpn, 20: 330–337.

    CAS  PubMed  Google Scholar 

  23. Pagratis N C, Bell C, Chang Y F, et al. 1997. Potent 2′-amino-, and 2′-fluoro-2′-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol, 15(1): 68–73.

    Article  CAS  PubMed  Google Scholar 

  24. Perrillo R P. 2005. Current treatment of chronic hepatitis B: benefits and limitations. Semin Liver Dis, 25: 20–28.

    Article  CAS  PubMed  Google Scholar 

  25. Rhodes A, Deakin A, Spaull J, et al. 2000. The generation and characterization of antagonist RNA aptamers to human oncostatin M. J Biol Chem, 275(37): 28555–28561.

    Article  CAS  PubMed  Google Scholar 

  26. Rhodes A, Smithers N, Chapman T, et al. 2001. The generation and characterisation of antagonist RNA aptamers to MCP-1. FEBS Lett, 506(2): 85–90.

    Article  CAS  PubMed  Google Scholar 

  27. Rivkin A. 2005. A review of entecavir in the treatment of chronic hepatitis B infection. Curr Med Res Opin, 21: 1845–1856.

    Article  CAS  PubMed  Google Scholar 

  28. Ruckman J, Green L S, Beeson J, et al. 1998. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem, 273(32): 20556–20567.

    Article  CAS  PubMed  Google Scholar 

  29. Rusconi C P, Scardino E, Layzer J, et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature. 2002; 419(6902): 90–94.

    Article  CAS  PubMed  Google Scholar 

  30. Sasaki H, Kojima T, Matsui S, et al. 1987. Interaction of lymphocytes with hepatocytes containing hepatitis B antigen: ultrastructural demonstration of target antigen andT-cell subsets by the peroxidase antibody technique. Virchows Arch A Pathol Anat Histopathol, 411: 489–498.

    Article  CAS  PubMed  Google Scholar 

  31. Shu D, Guo P. 2003. A viral RNA that binds ATP and contains a motif similar to an ATP-binding aptamer from SELEX. J Biol Chem, 278(9): 7119–7125.

    Article  CAS  PubMed  Google Scholar 

  32. Simon K, Lingappa V R, Ganem D. 1988. Secreted hepatitis B surface antigen polypeptides are derived from a transmembrane precursor. J Cell Biol, 107: 2163–2168.

    Article  CAS  PubMed  Google Scholar 

  33. Tian Y, Adya N, Wagner S, et al. 1995. Dissecting protein:protein interactions between transcription factors with an RNA aptamer. RNA, 1(3): 317–326.

    CAS  PubMed  Google Scholar 

  34. Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 3; 249(4968): 505–510.

    Article  CAS  PubMed  Google Scholar 

  35. Watson S R, Chang Y F, O’Connell D, et al. 2000. Anti-L-selectin aptamers: binding characteristics, pharmacokinetic parameters, and activity against an intravascular target in vivo. Antisense Nucleic Acid Drug Dev, 10(2): 63–75.

    CAS  PubMed  Google Scholar 

  36. Wiegand T W, Williams P B, Dreskin S C, et al. 1996. High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J Immunol, 157(1): 221–230.

    CAS  PubMed  Google Scholar 

  37. Wright T L. 2006. Introduction to chronic hepatitis B infection. Am J Gastroenterol, 101: S1–S6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yang.

Additional information

Foundation items: National Mega Research Program of China (2008ZX10002-011); National Natural Science Foundation of China (30700701); National High Technology Research and Development program of China (2006AA02Z128).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Yang, Y., Hu, B. et al. Development of HBsAg-binding aptamers that bind HepG2.2.15 cells via HBV surface antigen. Virol. Sin. 25, 27–35 (2010). https://doi.org/10.1007/s12250-010-3091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-010-3091-7

Key words

Navigation