Log in

Polyoxyethylene Lauryl Ether (Brij-35) and Poloxamer 407–Based Non-ionic Surfactant Vesicles for Dissolution Enhancement of Tacrolimus

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to develop niosomes using polyoxyethylene lauryl ether (Brij-35) and poloxamer 407 surfactants for dissolution enhancement of tacrolimus, a poorly water-soluble drug for improving oral bioavailability.

Methods

Niosomes were prepared using surfactants polyoxyethylene lauryl ether (Brij-35) (Group I), poloxamer 407 (Group II), and hybrid niosomes including both Brij-35 and poloxamer 407 (Group III). A thin film hydration technique was employed for the development of niosomes. Drug-surfactant interactions were examined using FTIR. The entrapment efficiency of niosomes was determined using ultra-centrifugation technique. Vesicle size, PDI, and zeta potential were measured by DLS experiments. Morphological evaluation of vesicles was carried out using SEM microscopy. DSC technique was used to evaluate the thermal behavior of niosomes. In vitro dissolution study of optimized niosomes (F1-Br35, F1-PL407, and F1-BrPL) was performed by dialysis bag method.

Results

FTIR studies revealed the compatibility of tacrolimus with used surfactants. Percent entrapment efficiency values were in the range of 88.65 ± 3.13 to 93.67 ± 1.57% for Brij-35-based formulations, 87.83 ± 6.24 to 89.01 ± 5.83% for poloxamer 407, and 90.08 ± 1.12 to 92.81 ± 0.31% for hybrid niosomes. The vesicle size of niosomes was in the range of 282.5 to 622.5 nm. SEM analysis showed an almost spherical shape of optimized formulations (F1-Br35, F1-PL407, and F1-BrPL). DSC analysis demonstrated amorphous form of tacrolimus indicating improved dissolution of tacrolimus. In vitro dissolution of optimized formulations F1-Br35, F1-PL407, and F1-BrPL at pH 7.4 indicated an improved dissolution profile of tacrolimus compared to pure drug aqueous dispersion.

Conclusion

Overall, the results of the study concluded that newly developed niosomes could act as a promising approach for enhancing the dissolution profile of tacrolimus and can act as alternate oral carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Authors declare that all the data supporting the findings of this study are included in the article.

References

  1. Patel PV, Panchal SS, Mehta TA. Improvement of dissolution rate of tacrolimus by solid dispersion technique. J Pharm Investig. 2013;43:45–53. https://doi.org/10.1007/s40005-013-0053-8.

    Article  CAS  Google Scholar 

  2. Dasineh S, Akbarian M, Ebrahimi HA, Behbudi G. Tacrolimus-loaded chitosan-coated nanostructured lipid carriers: preparation, optimization and physicochemical characterization. Appl Nanosci. 2021;11:1169–81. https://doi.org/10.1007/s13204-021-01744-4.

    Article  CAS  Google Scholar 

  3. Tao C, Huo T, Zhang Q, Song HJPD. Effect of Soluplus on the supersaturation and absorption of tacrolimus formulated as inclusion complex with dimethyl-β-cyclodextrin. Pharm Dev Technol. 2019;24:1076–82. https://doi.org/10.1080/10837450.2019.1630651.

  4. Ahmad Z, Khan MI, Siddique MI, Sarwar HS, Shahnaz G, Hussain SZ, et al. Fabrication and characterization of thiolated chitosan microneedle patch for transdermal delivery of tacrolimus. AAPS PharmSciTech. 2020;21:1–12. https://doi.org/10.1208/s12249-019-1611-9.

    Article  CAS  Google Scholar 

  5. Hasan MM, Uddin F, Islam MM, Hasan M, Banik K, Islam MA, et al. Nanotechnology drug delivery system: tools in advance pharmaceutical & human health care. Int J Biopharm. 2016;7:90–9.

    Google Scholar 

  6. Tuteja S, Alloway RR, Johnson JA, Gaber AO. The effect of gut metabolism on tacrolimus bioavailability in renaltransplant recipients. Clin transplant. 2001;71:1303–7.

  7. Yousaf R, Khan MI, Akhtar MF, Madni A, Sohail MF, Saleem A, et al. Development and in-vitro evaluation of chitosan and glyceryl monostearate based matrix lipid polymer hybrid nanoparticles (LPHNPs) for oral delivery of itraconazole. Heliyon. 2023;9:1–11. https://doi.org/10.1016/j.heliyon.2023.e14281.

    Article  CAS  Google Scholar 

  8. Sultan AA, El-Gizawy SA, Osman MA, El Maghraby GM. Niosomes for oral delivery of nateglinide: in situ–in vivo correlation. J Liposome Res. 2018;28:209–17. https://doi.org/10.1080/08982104.2017.1343835.

    Article  CAS  PubMed  Google Scholar 

  9. Khan MI, Madni A, Peltonen L. Development and in-vitro characterization of sorbitan monolaurate and poloxamer 184 based niosomes for oral delivery of diacerein. Eur J Pharm Sci. 2016;95:88–95. https://doi.org/10.1016/j.ejps.2016.09.002.

    Article  CAS  PubMed  Google Scholar 

  10. Khan MI, Madni A, Hirvonen J, Peltonen L. Ultrasonic processing technique as a green preparation approach for diacerein-loaded niosomes. AAPS PharmSciTech. 2017;18:1554–63. https://doi.org/10.1208/s12249-016-0622-z.

    Article  CAS  PubMed  Google Scholar 

  11. Khan DH, Bashir S, Figueiredo P, Santos HA, Khan MI, Peltonen L. Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes. J Drug Deliv Sci Technol. 2019;50:27–33. https://doi.org/10.1016/j.jddst.2019.01.012.

    Article  CAS  Google Scholar 

  12. Ag Seleci D, Seleci M, Walter J-G, Stahl F, Scheper TJJon. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater. 2016;2016:1–13. https://doi.org/10.1155/2016/7372306.

  13. Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: a review on niosomal research in the last decade. J Drug Deliv Sci Technol. 2020;56:1–17. https://doi.org/10.1016/j.jddst.2020.101581.

    Article  CAS  Google Scholar 

  14. Pardakhty A, Varshosaz J, Rouholamini A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm. 2007;328:130–41. https://doi.org/10.1016/j.ijpharm.2006.08.002.

    Article  CAS  PubMed  Google Scholar 

  15. Fazel M, Daeihamed M, Osouli M, Almasi A, Haeri A, Dadashzadeh S. Preparation, in-vitro characterization and pharmacokinetic evaluation of Brij decorated doxorubicin liposomes as a potential nanocarrier for cancer therapy. Iran J Pharm Res. 2018;17:33–43 (PMID: 31011340).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kreidel RN, Duque MD, Serra CHdR, Velasco MVR, Baby AR, Kaneko TM, et al. Dissolution enhancement and characterization of nimodipine solid dispersions with poloxamer 407 or PEG 6000. J Dispers Sci Technol. 2012;33:1354–9. https://doi.org/10.1080/01932691.2011.605663.

  17. Rehman MU, Rasul A, Waqas MK, Khan MI, Sher M. Development and in vitro characterization of niosomal formulations of immunosuppressant model drug. Pak J Pharm Sci. 2018;31:2623–8.

    CAS  PubMed  Google Scholar 

  18. Kashif PM, Madni A, Ashfaq M, Rehman M, Mahmood MA, Khan MI, et al. Development of Eudragit RS 100 microparticles loaded with ropinirole: optimization and in vitro evaluation studies. AAPS PharmSciTech. 2017;18:1810–22. https://doi.org/10.1208/s12249-016-0653-5.

    Article  CAS  PubMed  Google Scholar 

  19. Rehman MU, Rasul A, Khan MI, Hanif M, Aamir MN, Waqas MK, et al. Development of niosomal formulations loaded with cyclosporine A and evaluation of its compatibility. Trop J Pharm Res. 2018;17:1457–64. https://doi.org/10.4314/tjpr.v17i8.1.

    Article  CAS  Google Scholar 

  20. Zhang Y, **g Q, Hu H, He Z, Wu T, Guo T, et al. Sodium dodecyl sulfate improved stability and transdermal delivery of salidroside-encapsulated niosomes via effects on zeta potential. Int J Pharm. 2020;580:119183. https://doi.org/10.1016/j.ijpharm.2020.119183.

  21. Yeo LK, Olusanya TO, Chaw CS, Elkordy AA. Brief effect of a small hydrophobic drug (cinnarizine) on the physicochemical characterisation of niosomes produced by thin-film hydration and microfluidic methods. Pharmaceutics. 2018;10:185. https://doi.org/10.3390/pharmaceutics10040185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khan MI, Madni A, Ahmad S, Mahmood MA, Rehman M, Ashfaq M. Formulation design and characterization of a non-ionic surfactant based vesicular system for the sustained delivery of a new chondroprotective agent. Braz J Pharm Sci. 2015;51:607–15. https://doi.org/10.1590/S1984-82502015000300012.

    Article  CAS  Google Scholar 

  23. Shehata TM, Ibrahim MM, Elsewedy HS. Curcumin niosomes prepared from proniosomal gels: In vitro skin permeability, kinetic and in vivo studies. Polymers. 2021;13:791. https://doi.org/10.3390/polym13050791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thabet Y, Elsabahy M, Eissa NG. Methods for preparation of niosomes: a focus on thin-film hydration method. Methods. 2022;199:9–15. https://doi.org/10.1016/j.ymeth.2021.05.004.

    Article  CAS  PubMed  Google Scholar 

  25. Ribeiro ME, Moura CL, Vieira MG, Gramosa NV, Chaibundit C, de Mattos MC, et al. Solubilisation capacity of Brij surfactants. Int J Pharm. 2012;436:631–5. https://doi.org/10.1016/j.ijpharm.2012.07.032.

    Article  CAS  PubMed  Google Scholar 

  26. Peltonen L, Hirvonen J, Yliruusi JJJoc, science i. The effect of temperature on sorbitan surfactant monolayers. J Colloid Interface Sci. 2001;239:134–8. https://doi.org/10.1006/jcis.2001.7520.

  27. Rasul A, Khan MI, Rehman MU, Abbas G, Aslam N, Ahmad S, et al. In vitro characterization and release studies of combined nonionic surfactant-based vesicles for the prolonged delivery of an immunosuppressant model drug. Int J Nanomed. 2020;15:7937–49. https://doi.org/10.2147/IJN.S268846.

    Article  CAS  Google Scholar 

  28. Zarrintaj P, Ramsey JD, Samadi A, Atoufi Z, Yazdi MK, Ganjali MR, et al. Poloxamer: a versatile tri-block copolymer for biomedical applications. Acta Biomater. 2020;110:37–67. https://doi.org/10.1016/j.actbio.2020.04.028.

    Article  CAS  PubMed  Google Scholar 

  29. Yaghoobian M, Haeri A, Bolourchian N, Shahhosseni S, Dadashzadeh SJIJoN. The impact of surfactant composition and surface charge of niosomes on the oral absorption of repaglinide as a BCS II model drug. Int J Nanomed. 2020;15:8767–81. https://doi.org/10.2147/IJN.S261932.

  30. Tavano L, de Cindio B, Picci N, Ioele G, Muzzalupo R. Drug compartmentalization as strategy to improve the physico-chemical properties of diclofenac sodium loaded niosomes for topical applications. Biomed Microdevices. 2014;16:851–8. https://doi.org/10.1007/s10544-014-9889-6.

    Article  CAS  PubMed  Google Scholar 

  31. Giuliano E, Paolino D, Fresta M, Cosco D. Drug-loaded biocompatible nanocarriers embedded in poloxamer 407 hydrogels as therapeutic formulations. Medicines. 2019;6:1–20. https://doi.org/10.3390/medicines6010007.

    Article  CAS  Google Scholar 

  32. Junyaprasert VB, Singhsa P, Suksiriworapong J, Chantasart D. Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. Int J Pharm. 2012;423:303–11. https://doi.org/10.1016/j.ijpharm.2011.11.032.

    Article  CAS  PubMed  Google Scholar 

  33. Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa M, et al. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B. 2003;30:129–38. https://doi.org/10.1016/S0927-7765(03)00080-8.

    Article  CAS  Google Scholar 

  34. Mokhtar M, Sammour OA, Hammad MA, Megrab NA. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm. 2008;361:104–11. https://doi.org/10.1016/j.ijpharm.2008.05.031.

    Article  CAS  PubMed  Google Scholar 

  35. Verma A, Tiwari A, Saraf S, Panda PK, Jain A, Jain SKJEOoDD. Emerging potential of niosomes in ocular delivery. Expert Opin Drug Deliv. 2021; 18: 55–71. https://doi.org/10.1080/17425247.2020.1822322.

  36. Zaki RM, Ali AA, El Menshawe SF, Bary AA. Formulation and in vitro evaluation of diacerein loaded niosomes. Int J Pharm Pharm Sci. 2014;6:515–21. https://doi.org/10.33263/116.1464014800.

  37. Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci. 2010;99:2049–60. https://doi.org/10.1002/jps.21944.

    Article  CAS  PubMed  Google Scholar 

  38. Waqas MK, Sadia H, Khan MI, Omer MO, Siddique MI, Qamar S, et al. Development and characterization of niosomal gel of fusidic acid: in-vitro and ex-vivo approaches. Des Monomers Polym. 2022;25:165–74. https://doi.org/10.1080/15685551.2022.2086411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mohamed MI, Kassem MA, Khalil RM, Mohamed M. Enhancement of the anti-inflammatory efficacy of betamethasone valerate via niosomal encapsulation. Biointerface Res Appl Chem. 2021. 11: 14640–60. https://doi.org/10.33263/BRIAC116.1464014660.

  40. Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi AJAips. Niosome: a promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharmacol Pharm Sci. 2018; 2018: 6847971. https://doi.org/10.1155/2018/6847971.

  41. Ha JM, Kang SY, Park CW, Bin SA, Rhee YS, Seo JW, et al. Effect of poloxamer on physicochemical properties of tacrolimus solid dispersion improving water solubility and dissolution rate. J Pharm Investig. 2012;42:171–6. https://doi.org/10.1007/s40005-012-0025-4.

    Article  CAS  Google Scholar 

  42. Varshosaz J, Pardakhty A, Hajhashemi V-i, Najafabadi AR. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Deliv. 2003;10:251–62. https://doi.org/10.1080/drd_10_4_251.

  43. Khan DH, Bashir S, Correia A, Khan MI, Figueiredo P, Santos HA, et al. Utilization of green formulation technique and efficacy estimation on cell line studies for dual anticancer drug therapy with niosomes. Int J Pharm. 2019;572:118764. https://doi.org/10.1016/j.ijpharm.2019.118764.

  44. Abdelbary G, El-gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech. 2008;9(3):740–7. https://doi.org/10.1208/s12249-008-9105-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to Allmed Pharmaceuticals Pvt. Ltd. Lahore, Pakistan; Riphah International University, Lahore, Pakistan; LCW University, Lahore, Pakistan; and Lahore University of Management Sciences, Lahore, Pakistan, for the facilitation of the research process.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Razia Hanif, Muhammad Imran Khan, Asadullah Madni, Muhammad Furqan Akhtar, Muhammad Farhan Sohail, Ammara Saleem, Mubashar Rehman, and Sufyan Junaid Usmani. The first draft of the manuscript was written by Muhammad Imran Khan, and all authors commented on previous versions of the manuscript. Review, editing, and statistical analysis were carried out by Aslam Khan and Athar Masood. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Muhammad Imran Khan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanif, R., Khan, M.I., Madni, A. et al. Polyoxyethylene Lauryl Ether (Brij-35) and Poloxamer 407–Based Non-ionic Surfactant Vesicles for Dissolution Enhancement of Tacrolimus. J Pharm Innov 18, 1487–1499 (2023). https://doi.org/10.1007/s12247-023-09737-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09737-2

Keywords

Navigation