Log in

Isotopic Composition of Carbon and Nitrogen of Particulate Organic Matter in the Godavari Estuary: Seasonality in Sources and Processes

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Rivers transport organic matter originating within the estuary and terrestrial sources to the coastal ocean. The seasonal variations in the magnitude of river discharge alter the sources of particulate organic matter (POM) in the estuary. In order to examine the dominant sources of POM in the estuary, monthly samples were collected and analyzed for the isotopic composition of carbon and nitrogen of POM along with hydrographic characteristics of water column data in the Godavari estuary, India. C/N and POC/Chl-a and isotopic composition of C and N indicated in situ production is the major source of POM during the dry (33 ± 69 m3 s−1) and moderate discharge (2580 ± 3034 m3 s−1) periods. The δ13C and δ15NPOM were close to that of sediment organic carbon (− 24.0 ± 1 and 1.0 ± 2‰ respectively) during the peak discharge period (16,016 ± 15,346 m3 s−1) indicating that sediment organic matter contributed dominantly to the POM pool as high flow mixes upper layer of sediments. The stable isotope fractionation model clearly indicated that POM during the peak discharge period is contributed by external sources and in situ production during other periods. The Bayesian stable isotope linear mixing model (stable isotope analysis in R, SIAR) suggested that both freshwater and marine algae contributed > 50% of the POM during the dry and moderate discharge periods whereas sediment organic matter during the peak discharge period. Since a significant fraction of the in situ organic matter is fluxed to the coastal ocean, its impact on the coastal ecosystem through microbial loop needs further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acharyya, T., V.V.S.S. Sarma, B. Sridevi, V. Venkataramana, M.D. Bharathi, S.A. Naidu, B.S.K. Kumar, V.R. Prasad, D. Bandyopadhyay, N.P.C. Reddy, and M.D. Kumar. 2012. Reduced river discharge intensifies phytoplankton bloom in Godavari estuary, India. Marine Chemistry 132: 15–22.

    Article  Google Scholar 

  • Altabet, M.A. 2001. Nitrogen isotopic evidence for micronutrient control of fractional NO3− utilization in the equatorial Pacific. Limnology and Oceanography 46 (2): 368–380.

    Article  CAS  Google Scholar 

  • Andrews, J.E., A.M. Greenaway, and P.F. Dennis. 1998. Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts Bay, Kingston Harbour, Jamaica. Estuarine, Coastal and Shelf Science 46 (5): 743–756.

    Article  CAS  Google Scholar 

  • Arimitsu, M.L., K.A. Hobson, D.A.N. Webber, J.F. Piatt, E.W. Hood, and J.B. Fellman. 2018. Tracing biogeochemical subsidies from glacier runoff into Alaska’s coastal marine food webs. Global Change Biology 24 (1): 387–398.

    Article  Google Scholar 

  • Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil, and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Baird, M.E., S.M. Emsley, and J.M. Mcglade. 2001. Using a phytoplankton growth model to predict the fractionation of stable carbon isotopes. Journal of Plankton Research 23 (8): 841–848.

    Article  Google Scholar 

  • Balakrishna, K., and J.L. Probst. 2005. Organic carbon transport and C/N ratio variations in a large tropical river: Godavari as a case study, India. Biogeochemistry 73 (3): 457–473.

    Article  CAS  Google Scholar 

  • Barth, J.A., J. Veizer, and B. Mayer. 1998. Origin of particulate organic carbon in the upper lawrence: isotopic constraints. Earth and Planetary Science Letters 162 (1–4): 111–121.

    Article  CAS  Google Scholar 

  • Battin, T.J., S. Luyssaert, L.A. Kaplan, A.K. Aufdenkampe, A. Richter, and L.J. Tranvik. 2009. The boundless carbon cycle. Nature Geoscience 2 (9): 598–600.

    Article  CAS  Google Scholar 

  • Bentaleb, I., M. Fontugne, C. Descolas-Gros, C. Girardin, A. Mariotti, C. Pierre, C. Brunet, and A. Poisson. 1998. Carbon isotopic fractionation by plankton in the Southern Indian Ocean: Relationship between δ13C of particulate organic carbon and dissolved carbon dioxide. Journal of Marine Systems 17 (1–4): 39–58.

    Article  Google Scholar 

  • Best, J. 2019. Anthropogenic stresses on the world’s big rivers. Nature Geoscience 12 (1): 7–21.

    Article  CAS  Google Scholar 

  • Bharathi, M.D., and V.V.S.S. Sarma. 2019. Impact of monsoon-induced discharge on phytoplankton community structure in the tropical Indian estuaries. Regional Studies in Marine Science 31.

    Article  Google Scholar 

  • Blair, N.E., and R.C. Aller. 2012. The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science 4: 401–423.

    Article  Google Scholar 

  • Blair, N.E., E.L. Leithold, and R.C. Aller. 2004. From bedrock to burial: The evolution of particulate organic carbon across coupled watershed-continental margin systems. Marine Chemistry 92 (1–4): 141–156.

    Article  CAS  Google Scholar 

  • Bontes, B.M., R. Pel, B.W. Ibelings, H.T.S. Boschker, J.J. Middelburg, and E. Van Donk. 2006. The effects of biomanipulation on the biogeochemistry, carbon isotopic composition and pelagic food web relations of a shallow lake. Biogeosciences 3 (1): 69–83.

    Article  CAS  Google Scholar 

  • Bordovskiy, O.K. 1965. Accumulation and transformation of organic substances in marine sediments. Marine Geology 3: 3–114.

    Article  Google Scholar 

  • Brutemark, A., E. Lindehoff, E. Granéli, and W. Granéli. 2009. Carbon isotope signature variability among cultured microalgae: Influence of species, nutrients and growth. Journal of Experimental Marine Biology and Ecology 372 (1–2): 98–105.

    Article  CAS  Google Scholar 

  • Bueno, C.D.C., D. Frascareli, E.S. Gontijo, R. van Geldern, A.H. Rosa, K. Friese, and J.A. Barth. 2020. Dominance of in situ produced particulate organic carbon in a subtropical reservoir inferred from carbon stable isotopes. Scientific Reports 10 (1): 1–11.

    Article  Google Scholar 

  • Bunn, S.E., N.R. Longeragan, and M.A. Kempster. 1995. Effects of acid washing samples on stable isotope ratios of C and N in penaeid shrimps and seagrass: Implications for food web studies using stable isotopes. Limnology and Oceanography 40: 622–625.

    Article  CAS  Google Scholar 

  • Cardoso, S.J., L.O. Vidal, R.F. Mendonca, L.J. Tranvik, S. Sobek, and F. Roland 2013. Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir. Frontiers in Microbiology 4. https://doi.org/10.3389/fmicb.2013.00101.

  • Carreón-Palau, L., C.C. Parrish, J.A. del Angel-Rodríguez, H. Pérez-Espana, and S. Aguiñiga-García. 2013. Revealing organic carbon sources fueling a coral reef food web in the Gulf of Mexico using stable isotopes and fatty acids. Limnology and Oceanography 58 (2): 593–612.

    Article  Google Scholar 

  • Carritt, D.E., and J.H. Carpenter. 1966. Comparison and evaluation of currently employed modifications of the Winkler method for determining dissolved oxygen in seawater; a NASCO report. Journal of Marine Research 24: 286–318.

    CAS  Google Scholar 

  • Central Pollution Control Board (CPCB). 1995. Basin sub-basin inventory of Water Pollution Godavari Basin. CPCB, Delhi.

  • Chanton, J.P., and F.G. Lewis. 1999. Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola Bay, Florida. Estuaries 22 (3): 575–583.

    Article  CAS  Google Scholar 

  • Chen, C.T.A., and A.V. Borges. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2 Deep-Sea Research II 56: 578–590.

    Article  CAS  Google Scholar 

  • Cifuentes, L.A., J.H. Sharp, and M.L. Fogel. 1988. Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnology and Oceanography 33 (5): 1102–1115.

    Article  CAS  Google Scholar 

  • Clark, I.D., and P. Fritz. 1997. Environmental Isotopes in Hydrogeology (CRC Press, London).

  • Coplen, T.B. 1996. Guidelines for reporting certain isotropic values relevant to groundwater studies. Ground Water 34 (3): 388–389.

    CAS  Google Scholar 

  • Creach, V. 1995. Rigines et transferts de la matie`re oragnique dansun marais littoral: utilisation des compositions isotopiques na-turelles du carbone et de l’azote. Ph.D. thesis, Univ. of Rennes.

  • Dethier, E.N., C.E. Renshaw, and F.J. Magilligan. 2022. Rapid changes to global river suspended sediment flux by humans. Science 376 (6600): 1447–1452.

    Article  CAS  Google Scholar 

  • Dickson, A.G. 1990. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Research I, 37: 755–766.

  • Dubois, S., N. Savoye, A. Grémare, M. Plus, K. Charlier, A. Beltoise, and H. Blanchet. 2012. Origin and composition of sediment organic matter in a coastal semi-enclosed ecosystem: An elemental and isotopic study at the ecosystem space scale. Journal of Marine Systems 94: 64–73.

    Article  Google Scholar 

  • Faganeli, J., A. Malej, J. Pezdic, and V. Malacic. 1988. C: N: P ratios and stable c-isotopic ratios as indicators of sources of organic matter in the gulf of Trieste (northern Adriatic). Oceanologica Acta 11 (4): 377–382.

    CAS  Google Scholar 

  • Fagerbakke, K.M., M. Heldal, and S. Norland. 1996. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquatic Microbial Ecology 10 (1): 15–27.

    Article  Google Scholar 

  • Fernandes, V., N. Ramaiah, J.T. Paul, S. Sardessai, R. Jyothibabu, and M. Gauns. 2008. Strong variability in bacterioplankton abundance and production in central and western Bay of Bengal. Marine Biology 153: 975–985.

    Article  CAS  Google Scholar 

  • Gaillardet, J., B. Dupré, P. Louvat, and C.J. Allegre. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology 159 (1–4): 3–30.

    Article  CAS  Google Scholar 

  • Galy, V., C. France-Lanord, O. Beyssac, P. Faure, H. Kudrass, and F. Palhol. 2007. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450 (7168): 407–410.

    Article  CAS  Google Scholar 

  • Galy, V., B. Peucker-Ehrenbrink, and T. Eglinton. 2015. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521 (7551): 204–207.

    Article  CAS  Google Scholar 

  • Gawade, L., V.V.S.S. Sarma, Y.V. Rao, and K.P.J. Hemalatha. 2017. Variation of bacterial metabolic rates and organic matter in the monsoon-affected tropical estuary (Godavari, India). Geomicrobiology Journal 34 (7): 628–640.

    Article  CAS  Google Scholar 

  • Geider, R.J. 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytologist 1–34.

  • Goering, J., V. Alexander, and N. Haubenstock. 1990. Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a North Pacific Bay. Estuarine, Coastal and Shelf Science 30: 239–260.

    Article  CAS  Google Scholar 

  • Grashoff, K., Erhardt, M. and K. Kremling 1983. Methods of seawater analysis. Verlag Chemie. Weinheim Ingolfsson A, Hawkins SJ (2008) Slow recovery from disturbance: a20: 689–691.

  • Gutiérrez-Rodríguez, A., M. Décima, B.N. Popp, and M.R. Landry. 2014. Isotopic invisibility of protozoan trophic steps in marine food webs. Limnology and Oceanography 59 (5): 1590–1598.

    Article  Google Scholar 

  • Hamilton, S.K., and W.M. Lewis Jr. 1992. Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezuela. Geochimica Et Cosmochimica Acta 56 (12): 4237–4246.

    Article  CAS  Google Scholar 

  • Harding, J.N., and J.D. Reynolds. 2014. Opposing forces: Evaluating multiple ecological roles of Pacific salmon in coastal stream ecosystems. Ecosphere 5 (12): 1–22.

    Article  Google Scholar 

  • Harmelin-Vivien, M., V. Loizeau, C. Mellon, B. Beker, D. Arlhac, X. Bodiguel, F. Ferraton, R. Hermand, X. Philippon, and C. Salen-Picard. 2008. Comparison of C and N stable isotope ratios between surface particulate organic matter and microphytoplankton in the Gulf of Lions (NW Mediterranean). Continental Shelf Research 28 (15): 1911–1919.

    Article  Google Scholar 

  • Head, E.J.H., W.G. Harrison, B.I. Irwin, E.P.W. Horne, and W.K.W. Li. 1996. Plankton dynamics and carbon flux in an area of upwelling off the coast of Morocco. Deep Sea Research Part I: Oceanographic Research Papers 43 (11–12): 1713–1738.

    Article  CAS  Google Scholar 

  • Hedges, J.I., R.G. Keil, and R. Benner. 1997. What happens to terrestrial organic matter in the ocean? Organic Geochemistry 27 (5–6): 195–212.

    Article  CAS  Google Scholar 

  • Hellings, L., F. Dehairs, M. Tackx, E. Keppens, and W. Baeyens. 1999. Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by stable carbon isotope composition. Biogeochemistry 47 (2): 167–186.

    Article  CAS  Google Scholar 

  • Herman, P.M., and C.H. Heip. 1999. Biogeochemistry of the MAximum TURbidity Zone of Estuaries (MATURE): Some conclusions. Journal of Marine Systems 22 (2–3): 89–104.

    Article  Google Scholar 

  • Hilton, R.G., Galy, A. and N. Hovius. 2008. Riverine particulate organic carbon from an active mountain belt: importance of landslides. Global Biogeochemical Cycles 22 (1).

  • Hinga, K.R., M.A. Arthur, M.E. Pilson, and D. Whitaker. 1994. Carbon isotope fractionation by marine phytoplankton in culture: The effects of CO2 concentration, pH, temperature, and species. Global Biogeochemical Cycles 8 (1): 91–102.

    Article  CAS  Google Scholar 

  • Hoch, M.P., R.A. Snyder, L.A. Cifuentes, and R.B. Coffin. 1996. Stable isotope dynamics of nitrogen recycled during interactions among marine bacteria and protists. Marine Ecology Progress Series 132: 229–239.

    Article  CAS  Google Scholar 

  • Howe, E., C.A. Simenstad, and A. Ogston. 2017. Detrital shadows: Estuarine food web connectivity depends on fluvial influence and consumer feeding mode. Ecological Applications 27 (7): 2170–2193.

    Article  Google Scholar 

  • Hu, J., G. Jia, B. Mai, and G. Zhang. 2006. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China. Marine Chemistry 98 (2–4): 274–285.

    Article  CAS  Google Scholar 

  • Ittekkot, V. and R.W.P.M. Laane. 1991. Fate of riverine particulate organic matter. In Biogeochemistry of major world rivers. SCOPE 42: 233–243.

  • Ittekkot, V., R.R. Nair, S. Honjo, V. Ramaswamy, M. Bartsch, S. Manganini, and B.N. Desai. 1991. Enhanced particle fluxes in the Bay of Bengal induced by injection of fresh water. Nature 351 (6325): 385–387.

    Article  Google Scholar 

  • Kao, S.J., and K.K. Liu. 2000. Stable carbon and nitrogen isotope systematics in a human-disturbed watershed (Lanyang-Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes. Global Biogeochemical Cycles 14 (1): 189–198.

    Article  CAS  Google Scholar 

  • Krishna, M.S., S.A. Naidu, C.V. Subbaiah, V.V.S.S. Sarma, and N.P.C. Reddy. 2013. Distribution and sources of organic matter in surface sediments of the eastern continental margin of India. Journal of Geophysical Research: Biogeosciences 118 (4): 1484–1494.

    Article  Google Scholar 

  • Krishna, M.S., S.A. Naidu, C.V. Subbaiah, L. Gawade, V.V.S.S. Sarma, and N.P.C. Reddy. 2014. Sources, distribution and preservation of organic matter in a tropical estuary (Godavari, India). Estuaries and Coasts 38 (3): 1032–1047.

    Article  Google Scholar 

  • Krishna, M.S., V.R. Prasad, V.V.S.S. Sarma, N.P.C. Reddy, K.P.J. Hemalatha, and Y.V. Rao. 2015. Fluxes of dissolved organic carbon and nitrogen to the northern Indian Ocean from the Indian monsoonal rivers. Journal of Geophysical Research: Biogeosciences 120 (10): 2067–2080.

    Article  CAS  Google Scholar 

  • Lafon, A., N. Silva, and C.A. Vargas. 2014. Contribution of allochthonous organic carbon across the Serrano River Basin and the adjacent fjord system in Southern Chilean Patagonia: insights from the combined use of stable isotope and fatty acid biomarkers. Progress in Oceanography 120: 98–113.

    Article  Google Scholar 

  • Lara, R.J., V. Alder, C.A. Franzosi, and G. Kattner. 2010. Characteristics of suspended particulate organic matter in the southwestern Atlantic: Influence of temperature, nutrient and phytoplankton features on the stable isotope signature. Journal of Marine Systems 79 (1–2): 199–209.

    Article  Google Scholar 

  • Lehoerff, G., E.L. Denn, and G. Arzul. 1993. Planktonic ecosystems in the channel-trophic relations. Oceanologica Acta 16 (5–6): 661–670.

    Google Scholar 

  • Liu, H.K., and C.T.A. Chen. 2017. Reconciliation of pH25 and pH in situ acidification rates of the surface oceans: A simple conversion using only in situ temperature. Limnology and Oceanography: Methods 15: 328–335.

  • Ludwig, W., J.L. Probst, and S. Kempe. 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles 10 (1): 23–41.

    Article  CAS  Google Scholar 

  • Maavara, T., R. Lauerwald, P. Regnier, and P. Van Cappellen. 2017. Global perturbation of organic carbon cycling by river damming. Nature Communications 8 (1): 1–10.

    Article  Google Scholar 

  • Mariotti, A. 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303 (5919): 685–687.

    Article  CAS  Google Scholar 

  • Meybeck, M. 1982. Carbon, nitrogen, and phosphorus are transported by world rivers. American Journal of Science 282 (4): 401–450.

    Article  CAS  Google Scholar 

  • Middelburg, J.J., and P.M. Herman. 2007. Organic matter processing in tidal estuaries. Marine Chemistry 106 (1–2): 127–147.

    Article  CAS  Google Scholar 

  • Middelburg, J.J., and J. Nieuwenhuize. 1998. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Marine Chemistry 60 (3–4): 217–225.

    Article  CAS  Google Scholar 

  • Millero, F.J., G.K. Ward, A.L. Surdo, and F. Huang. 2012. Effect of pressure on the dissociation constant of boric acid in water and seawater. Geochimica Et Cosmochimica Acta 76: 83–92.

    Article  CAS  Google Scholar 

  • Montagnes, D.J., J.A. Berges, P.J. Harrison, and F.J.R.L. Taylor. 1994. Estimating carbon, nitrogen, protein, and chlorophyll-a from volume in marine phytoplankton. Limnology and Oceanography 39 (5): 1044–1060.

    Article  CAS  Google Scholar 

  • Mook, W.G., J.C. Bommerson, and W.H. Staverman. 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22 (2): 169–176.

    Article  CAS  Google Scholar 

  • Mukherjee, J., S.A. Naidu, V.V.S.S. Sarma, and T. Ghosh. 2018. Influence of river discharge on zooplankton diet in the Godavari estuary (Bay of Bengal, Indian Ocean). Advances in Oceanography & Limnology 9 (1).

  • Myrttinen, A., V. Becker, and J.A.C. Barth. 2012. A review of methods used for equilibrium isotope fractionation investigations between dissolved inorganic carbon and CO2. Earth-Science Reviews 115 (3): 192–199.

    Article  CAS  Google Scholar 

  • Myrttinen, A., V. Becker, and J.A.C. Barth. 2015. Corrigendum to ‘A review of methods used for equilibrium isotope fractionation investigations between dissolved inorganic carbon and CO2’ [Earth Sci. Rev. 115(2012) [192–199]]. Earth Science Review 141: 178.

    Article  Google Scholar 

  • Parnell, A.C., J. Haslett, J.R. Allen, C.E. Buck, and B. Huntley. 2008. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quaternary Science Reviews 27 (19–20): 1872–1885.

    Article  Google Scholar 

  • Parnell, A.C., R. Inger, S. Bearhop, and A.L. Jackson. 2010. Source partitioning using stable isotopes: Co** with too much variation. PLoS One1 5 (3).

    Article  Google Scholar 

  • Peterson, B.J. and B. Fry, 1987. Stable isotopes in ecosystem studies. Annual review of ecology and systematics pp. 293–320.

  • Pinnegar, J.K., and N.V.C. Polunin. 1999. Differential fractionation of δ13C and δ15N among fish tissues: Implications for the study of trophic interactions. Functional Ecology 13: 225–231.

    Article  Google Scholar 

  • Quinton, J.N., G. Govers, K. Van Oost, and R.D. Bardgett. 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience 3 (5): 311–314.

    Article  CAS  Google Scholar 

  • Rau, G.H., U. Riebesell, and D. Wolf-Gladrow. 1996. A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake. Marine Ecology Progress Series 133: 275–285.

    Article  CAS  Google Scholar 

  • Redfield, A.C., B.H. Ketchum, and F.A. Richards. 1963. The influence of organisms on the composition of seawater. In The sea, vol. 2, ed. M.N. Hill, 26–77. New York: Wiley.

    Google Scholar 

  • Sakamaki, T., and J.S. Richardson. 2008. Effects of small rivers on chemical properties of sediment and diets for primary consumers in estuarine tidal flats. Marine Ecology Progress Series 360: 13–24.

    Article  CAS  Google Scholar 

  • Sarma, V.V.S.S. 2002. An evaluation of physical and biogeochemical processes regulating the oxygen minimum zone in the water column of the Bay of Bengal. Global Biogeochemical Cycles 16: 1099. https://doi.org/10.1029/2002GB001920.

  • Sarma, V.V.S.S. 2022. Biogeochemistry of carbon, nitrogen and oxygen in the Bay of Bengal: New insights through re-analysis of data. Journal of Earth System Science 131: 159.

    Article  CAS  Google Scholar 

  • Sarma, V.V.S.S., J. Arya, C.V. Subbaiah, S.A. Naidu, L. Gawade, P. Praveen Kumar, and N.P.C. Reddy. 2012. Stable isotopes of carbon and nitrogen in suspended matter and sediments from the Godavari estuary. Journal of Oceanography 68 (2): 307–319.

    Article  CAS  Google Scholar 

  • Sarma, V.V.S.S., S.N.M. Gupta, P.V.R. Babu, T. Acharya, N. Harikrishnachari, K. Vishnuvardhan, N.S. Rao, N.P.C. Reddy, V.V. Sarma, Y. Sadhuram, and T.V.R. Murty. 2009. Influence of river discharge on plankton metabolic rates in the tropical monsoon driven Godavari estuary, India. Estuarine, Coastal and Shelf Science 85 (4): 515–524.

    Article  CAS  Google Scholar 

  • Sarma, V.V.S.S., M.S. Krishna, V.R. Prasad, B.S.K. Kumar, S.A. Naidu, G.D. Rao, R. Viswanadham, T. Sridevi, P.P. Kumar, and N.P.C. Reddy. 2014. Distribution and sources of particulate organic matter in the Indian monsoonal estuaries during monsoon. Journal of Geophysical Research: Biogeosciences 119 (11): 2095–2111.

    Article  CAS  Google Scholar 

  • Sarma, V.V.S.S., N.A. Kumar, V.R. Prasad, V. Venkataramana, S. Appalanaidu, B. Sridevi, B.S.K. Kumar,M.D. Bharati, C.V. Subbaiah, T. Acharyya, and G.D. Rao. 2011. High CO2 emissions from the tropical Godavari estuary (India) associated with monsoon river discharges. Geophysical Research Letters 38 (8).

  • Sarma, V.V.S.S., Y.S. Paul, D.G. Vani, and V.S.N. Murty. 2015. Impact of river discharge on the coastal water pH and pCO2 levels during the Indian Ocean Dipole (IOD) years in the western Bay of Bengal. Continental Shelf Research 107: 132–140.

  • Sarma, V. V. S. S., B, Sridevi, K. Maneesha, T. Sridevi, S.A. Naidu, V. R. Prasad, & et al. 2013. Impact of atmospheric and physical forcings on biogeochemical cycling of dissolved oxygen and nutrients in the coastal Bay of Bengal. Journal of Oceanography 69: 229–243.

  • Smith, D., M. Simon, A.L. Alldredge, and F. Azam. 1992. Intense hydrolytic enzyme activity on marine aggregates and implication for rapid particle dissolution. Nature 35: 9139–9141.

    Google Scholar 

  • Smith, S.V., and J.T. Hollibaugh. 1993. Coastal metabolism and the oceanic organic carbon balance. Reviews of Geophysics 31 (1): 75–89.

    Article  Google Scholar 

  • Soman, M.K., and K.K. Kumar. 1990. Some aspects of daily rainfall distribution over India during the south-west monsoon season. International Journal of Climatology 10 (3): 299–311.

    Article  Google Scholar 

  • Sridevi, B., V.V.S.S. Sarma, T.V.R. Murty, Y. Sadhuram, N.P.C. Reddy, K. Vijayakumar, N.S.N. Raju, C.J. Kumar, Y.S.N. Raju, R. Luis, and M.D. Kumar. 2015. Variability in stratification and flushing times of the Gautami-Godavari estuary, India. Journal of Earth System Science 124 (5): 993–1003.

    Article  CAS  Google Scholar 

  • Stallard, R.F. 1998. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles 12 (2): 231–257.

    Article  CAS  Google Scholar 

  • Syvitski, J., J.R. Ángel, Y. Saito, I. Overeem, C.J. Vörösmarty, H. Wang, and D. Olago. 2022. Earth’s sediment cycle during the Anthropocene. Nature Reviews Earth & Environment 3 (3): 179–196.

    Article  Google Scholar 

  • Tao, S., T.I. Eglinton, D.B. Montluçon, C. McIntyre, and M. Zhao. 2015. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance. Earth and Planetary Science Letters 414: 77–86.

    Article  CAS  Google Scholar 

  • Thompson, P.A., M.X. Guo, and P.J. Harrison. 1992. Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton 1. Journal of Phycology 28 (4): 481–488.

    Article  CAS  Google Scholar 

  • Thornton, S.F., and J. McManus. 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: Evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science 38 (3): 219–233.

    Article  CAS  Google Scholar 

  • Troina, G.C., F. Dehairs, S. Botta, J.C. Di Tullio, M. Elskens, and E.R. Secchi. 2020. Zooplankton-based δ13C and δ15N isoscapes from the outer continental shelf and slope in the subtropical western South Atlantic. Deep Sea Research Part I: Oceanographic Research Papers 159.

    Article  CAS  Google Scholar 

  • Vargas, C.A., R.A. Martinez, V. San Martin, M. Aguayo, N. Silva, and R. Torres. 2011. Allochthonous subsidies of organic matter across a lake–river–fjord landscape in the Chilean Patagonia: Implications for marine zooplankton in inner fjord areas. Continental Shelf Research 31 (3–4): 187–201.

    Article  Google Scholar 

  • Venkataramana, V., Sarma, V.V.S.S., Reddy, A.M. 2017. River discharge as a major driving force on spatial and temporal variations in zooplankton biomass and community structure in the Godavari estuary, India. Environmental Monitoring and Assessment 189:474

  • Vuorio, K., M. Meili, and J. Sarvala. 2006. Taxon-specific variation in the stable isotopic signatures (δ13C and δ15N) of lake phytoplankton. Freshwater Biology 51 (5): 807–822.

    Article  CAS  Google Scholar 

  • Wang, H., X. Ran, A.F. Bouwman, J. Wang, B. Xu, Z. Song, S. Sun, Q. Yao, and Z. Yu. 2022. Damming alters the particulate organic carbon sources, burial, export and estuarine biogeochemistry of rivers. Journal of Hydrology 607.

    Article  CAS  Google Scholar 

  • Wikner, J., and A. Andersson. 2012. Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea. Global Change Biology 18 (8): 2509–2519.

    Article  Google Scholar 

  • Wild, B., A. Andersson, L. Bröder, J. Vonk, G. Hugelius, J.W. McClelland, W. Song, P.A. Raymond, and Ö Gustafsson. 2019. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proceedings of the National Academy of Sciences 116 (21): 10280–10285.

    Article  CAS  Google Scholar 

  • Wollast, R. 1998. Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. In: Brink, K.H. Robinson, A.R. (Eds). The Sea. Vol, 10, Wiley, New York, PP. 213–252.

  • Wollast, R. and Mackenzie, F.T., 1989. Global biogeochemical cycles and climate. In Climate and Geo-sciences (pp. 453–473). Springer, Dordrecht.

  • Wu, Y., T.I. Eglinton, J. Zhang, and D.B. Montlucon. 2018. Spatiotemporal variation of the quality, origin, and age of particulate organic matter transported by the Yangtze River (Changjiang). Journal of Geophysical Research: Biogeosciences 123 (9): 2908–2921.

    Article  CAS  Google Scholar 

  • Ye, F., W. Guo, Z. Shi, G. Jia, and G. Wei. 2017. Seasonal dynamics of particulate organic matter and its response to flooding in the Pearl River Estuary, China, revealed by stable isotope (δ13 C and δ15 N) analyses. Journal of Geophysical Research: Oceans 122 (8): 6835–6856.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Indo-French Centre for Promotion of Advanced Research (IFCPAR) for funding this project entitled “Nutrients transfers through groundwater in India.” We would like to thank Prof. Damien Cardinal, Sarath, and V. Vaury for their help during the sampling. We would like to thank two anonymous reviewers and co-editor-in-chief for their constructive comments to improve the presentation of our results. This has the NIO contribution number.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. S. S. Sarma.

Additional information

Communicated by Zhanfei Liu

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 688 KB)

Supplementary file2 (PDF 385 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, V.R.D., Rajula, G.R., Kumar, B.S.K. et al. Isotopic Composition of Carbon and Nitrogen of Particulate Organic Matter in the Godavari Estuary: Seasonality in Sources and Processes. Estuaries and Coasts 47, 128–143 (2024). https://doi.org/10.1007/s12237-023-01264-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-023-01264-0

Keywords

Navigation